3 research outputs found

    Aerosol mass and size‑resolved metal content in urban Bangkok, Thailand

    Get PDF
    Inhalable particulate matter (PM) is a health concern, and people living in large cities such as Bangkok are exposed to high concentrations. This exposure has been linked to respiratory and cardiac diseases and cancers of the lung and brain. Throughout 2018, PM was measured in northern Bangkok near a toll road (13.87°N, 100.58°E) covering all three seasons (cool, hot and rainy). PM(10) was measured in 24- and 72-h samples. On selected dates aerodynamic size and mass distribution were measured as 3-day samples from a fixed 5th floor inlet. Particle number concentration was measured from the 5th floor inlet and in roadside survey measurements. There was a large fraction of particle number concentration in the sub-micron range, which showed the greatest variability compared with larger fractions. Metals associated with combustion sources were most found on the smaller size fraction of particles, which may have implications for associated adverse health outcomes because of the likely location of aerosol deposition in the distal airways of the lung. PM(10) samples varied between 30 and 100 μg m(−3), with highest concentrations in the cool season. The largest metal fractions present in the PM(10) measurements were calcium, iron and magnesium during the hot season with average airborne concentrations of 13.2, 3.6 and 2.0 μg m(−3), respectively. Copper, zinc, arsenic, selenium, molybdenum, cadmium, antimony and lead had large non-crustal sources. Principal component analysis (PCA) identified likely sources of the metals as crustal minerals, tailpipe exhaust and non-combustion traffic. A health risk analysis showed a higher risk of both carcinogenic and non-carcinogenic health effects in the drier seasons than the wet season due to ingestion of nickel, arsenic, cadmium and lead. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11356-022-20806-w

    Exposure to arsenic in utero is associated with various types of DNA damage and micronuclei in newborns: a birth cohort study

    Get PDF
    BACKGROUND: Growing evidence indicates that in utero arsenic exposures in humans may increase the risk of adverse health effects and development of diseases later in life. This study aimed to evaluate potential health risks of in utero arsenic exposure on genetic damage in newborns in relation to maternal arsenic exposure. METHODS: A total of 205 pregnant women residing in arsenic-contaminated areas in Hanam province, Vietnam, were recruited. Prenatal arsenic exposure was determined by arsenic concentration in mother’s toenails and urine during pregnancy and in umbilical cord blood collected at delivery. Genetic damage in newborns was assessed by various biomarkers of early genetic effects including oxidative/nitrative DNA damage (8-hydroxydeoxyguanosine, 8-OHdG, and 8-nitroguanine), DNA strand breaks and micronuclei (MN) in cord blood. RESULTS: Maternal arsenic exposure, measured by arsenic levels in toenails and urine, was significantly increased (p <  0.05) in subjects residing in areas with high levels of arsenic contamination in drinking water. Cord blood arsenic level was significantly increased in accordance with maternal arsenic exposure (p <  0.001). Arsenic exposure in utero is associated with genotoxic effects in newborns indicated as increased levels of 8-OHdG, 8-nitroguanine, DNA strand breaks and MN frequency in cord blood with increasing levels of maternal arsenic exposure. Maternal toenail arsenic level was significantly associated with all biomarkers of early genetic effects, while cord blood arsenic levels associated with DNA strand breaks and MN frequency. CONCLUSIONS: In utero arsenic exposure is associated with various types of genetic damage in newborns potentially contributing to the development of diseases, including cancer, later in life
    corecore