51 research outputs found
Evaluation and validation of prognostic and predictive markers of breast cancer
Lâidentification de marqueurs pronostiques et prĂ©dictifs du cancer du sein est un facteur important pour une meilleure comprĂ©hension du processus Ă©volutif et le dĂ©veloppement de thĂ©rapies ciblĂ©es. Les rĂ©cepteurs des oestrogĂšnes (RE) reprĂ©sentent ainsi Ă la fois un marqueur pronostique mais aussi prĂ©dictif du traitement par le tamoxifĂšne ou les anti-aromatases. Cependant, un certain nombre de patientes vont Ă©voluer en dĂ©pit de traitements anti-hormonaux adaptĂ©s. Lâobjectif de notre travail, a Ă©tĂ© dâĂ©valuer la mĂ©thode de mesure des RE, lâapport des protĂ©ases dans la distinction de profils tumoraux pronostiques et prĂ©dictifs. Nous avons dĂ©montrĂ© lâinfluence du mode de mesure des RE et en particulier de lâexpression quantitative sur lâinterprĂ©tation pronostique et sur une meilleure dĂ©termination du bĂ©nĂ©fice du traitement en fonction du niveau dâexpression des RE. Nous avons montrĂ© lâintĂ©rĂȘt de lâĂ©valuation des protĂ©ases tissulaires uPA, PAI-I et cathĂ©psine-D, pour caractĂ©riser lâhĂ©tĂ©rogĂ©nĂ©itĂ© des tumeurs en complĂ©ment des RE. ParticuliĂšrement, chez les patientes RE+, des taux Ă©levĂ©s de cathĂ©psine-D et de PAI-1 Ă©taient un indicateur de mauvais pronostic. Nous avons dĂ©veloppĂ© un nomogramme combinant RE et le statut ganglionnaire Ă 3 types de protĂ©ases : PAI-1, cathĂ©psine-D et la thymidine kinase, pour dĂ©terminer la probabilitĂ© de survie Ă 2 et 5 ans. De plus, ces protĂ©ases Ă©valuĂ©es dans les tumeurs infectĂ©es par lâEpstein-Barr virus (EBV), tĂ©moignaient de tumeurs biologiquement agressives avec des taux plus Ă©levĂ©s de thymidine kinase. Notre travail a contribuĂ© Ă amĂ©liorer lâidentification de profils des tumeurs en fonction des RE et des protĂ©ases et de caractĂ©riser les tumeurs viro-induites.The identification of prognostic and predictive markers is important for a better understanding of the evolutionary process and the development of targeted therapies. Thus estrogen receptors (ER) represent both an important prognostic marker but also predictive of therapies using tamoxifen or aromatase inhibitors. However, a number of patients will evolve despite hormonotherapy. The objective of our work was to evaluate the method for measuring ER, the contribution of proteases in the distinction of prognostic and predictive tumor profiles. In our work, we demonstrated the influence of the mode of measure of ER and in particular its quantitative expression on the prognostic interpretation and a better determination of benefit of treatment depending on the level of expression of ER. We show the interest of the evaluation of tissue proteases uPA, PAI-I and cathepsin-D, to characterize the heterogeneity of tumors in addition to ER. Specifically, in ER + patients, high levels of cathepsin-D and PAI-1 are an indicator of poor prognosis. We developed a nomogram combining ER and nodal status, to 3 types of proteases: PAI-1, cathepsin-D and thymidine kinase, to determine the probability of survival at 2 and 5 years. In addition, these proteases are evaluated in tumors infected with the Epstein-Barr virus (EBV) and shows high rates of thymidine kinase in EBV + BC, reflecting biologically aggressive tumors. Our work has helped to improve the identification of profiles of tumors according to ER and proteases and characterize virus-associated tumors
Prise en charge de 2 formes particuliÚres de cancers du sein (les cancers colloïdes et médullaires)
AIX-MARSEILLE2-BU MĂ©d/Odontol. (130552103) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF
Evaluation et validation de marqueurs pronostiques et prédictifs dans la prise en charge des patientes présentant un cancer du sein
L identification de marqueurs pronostiques et prĂ©dictifs du cancer du sein est un facteur important pour une meilleure comprĂ©hension du processus Ă©volutif et le dĂ©veloppement de thĂ©rapies ciblĂ©es. Les rĂ©cepteurs des oestrogĂšnes (RE) reprĂ©sentent ainsi Ă la fois un marqueur pronostique mais aussi prĂ©dictif du traitement par le tamoxifĂšne ou les anti-aromatases. Cependant, un certain nombre de patientes vont Ă©voluer en dĂ©pit de traitements anti-hormonaux adaptĂ©s. L objectif de notre travail, a Ă©tĂ© d Ă©valuer la mĂ©thode de mesure des RE, l apport des protĂ©ases dans la distinction de profils tumoraux pronostiques et prĂ©dictifs. Nous avons dĂ©montrĂ© l influence du mode de mesure des RE et en particulier de l expression quantitative sur l interprĂ©tation pronostique et sur une meilleure dĂ©termination du bĂ©nĂ©fice du traitement en fonction du niveau d expression des RE. Nous avons montrĂ© l intĂ©rĂȘt de l Ă©valuation des protĂ©ases tissulaires uPA, PAI-I et cathĂ©psine-D, pour caractĂ©riser l hĂ©tĂ©rogĂ©nĂ©itĂ© des tumeurs en complĂ©ment des RE. ParticuliĂšrement, chez les patientes RE+, des taux Ă©levĂ©s de cathĂ©psine-D et de PAI-1 Ă©taient un indicateur de mauvais pronostic. Nous avons dĂ©veloppĂ© un nomogramme combinant RE et le statut ganglionnaire Ă 3 types de protĂ©ases : PAI-1, cathĂ©psine-D et la thymidine kinase, pour dĂ©terminer la probabilitĂ© de survie Ă 2 et 5 ans. De plus, ces protĂ©ases Ă©valuĂ©es dans les tumeurs infectĂ©es par l Epstein-Barr virus (EBV), tĂ©moignaient de tumeurs biologiquement agressives avec des taux plus Ă©levĂ©s de thymidine kinase. Notre travail a contribuĂ© Ă amĂ©liorer l identification de profils des tumeurs en fonction des RE et des protĂ©ases et de caractĂ©riser les tumeurs viro-induites.The identification of prognostic and predictive markers is important for a better understanding of the evolutionary process and the development of targeted therapies. Thus estrogen receptors (ER) represent both an important prognostic marker but also predictive of therapies using tamoxifen or aromatase inhibitors. However, a number of patients will evolve despite hormonotherapy. The objective of our work was to evaluate the method for measuring ER, the contribution of proteases in the distinction of prognostic and predictive tumor profiles. In our work, we demonstrated the influence of the mode of measure of ER and in particular its quantitative expression on the prognostic interpretation and a better determination of benefit of treatment depending on the level of expression of ER. We show the interest of the evaluation of tissue proteases uPA, PAI-I and cathepsin-D, to characterize the heterogeneity of tumors in addition to ER. Specifically, in ER + patients, high levels of cathepsin-D and PAI-1 are an indicator of poor prognosis. We developed a nomogram combining ER and nodal status, to 3 types of proteases: PAI-1, cathepsin-D and thymidine kinase, to determine the probability of survival at 2 and 5 years. In addition, these proteases are evaluated in tumors infected with the Epstein-Barr virus (EBV) and shows high rates of thymidine kinase in EBV + BC, reflecting biologically aggressive tumors. Our work has helped to improve the identification of profiles of tumors according to ER and proteases and characterize virus-associated tumors.AIX-MARSEILLE2-Bib.electronique (130559901) / SudocSudocFranceF
Imperfect biomarkers for adjuvant chemotherapy in early stage breast cancer with good prognosis
International audienceThe proliferation of biomarkers has raised concerns regarding the possibility for clinical judgment to be improperly removed from clinician's jurisdiction and included in laboratory tests. To evaluate the ways in which the diffusion of biomarkers questions the autonomy of clinicians, we consider the case of chemotherapy prescription to women with early stage breast cancer and a good prognosis. Drawing on a qualitative study of clinicians working in a diversity of institutional contexts, we follow three biomarkers available to guide this routinely made decision. We show that, biomarkers able to reduce all the uncertainties associated with, what we analyse as an uncomfortable decision, are sought more than dreaded by clinicians. If such ideal tools are unavailable, the fact is well acknowledged by the profession. Rather than precluding their usage, the imperfection of existing biomarkers is controlled by the profession, through their integration as additional tools in the decision process. The fact that the biomarkers are recognized as imperfect biomedical entities reinforces the importance of local material, organizational and financial constraints over that of international science, technology and clinical data, in their diffusion. The regulation of the uncertainties associated with these imperfections is organized at the professional level. Through an important work, relying on guidelines and enforced in collective bodies, the series of heterogeneous bioclinical evidences available are articulated. Biomarkers tend to be subordinated to the clinic. While maintaining the professional autonomy, the process also strengthens the internal professional hierarchy. When the most expert clinicians manage to inhabit a space for clinical autonomy, the nonexpert are torn between stronger professional rules and patient preferences. In this alliance between biomarkers and experts, their clinical autonomy tends to be the price for the professional autonomy
Prognostic significance of tumor-related proteases as a function of the estrogen receptor status
International audienc
Direct comparison of logistic regression and recursive partitioning to predict chemotherapy response of breast cancer based on clinical pathological variables
International audienceThe purpose was to compare logistic regression model (LRM) and recursive partitioning (RP) to predict pathologic complete response to preoperative chemotherapy in patients with breast cancer. The two models were built in a same training set of 496 patients and validated in a same validation set of 337 patients. Model performance was quantified with respect to discrimination (evaluated by the areas under the receiver operating characteristics curves (AUC)) and calibration. In the training set, AUC were similar for LRM and RP models (0.77 (95% confidence interval, 0.74â0.80) and 0.75 (95% CI, 0.74â0.79), respectively) while LRM outperformed RP in the validation set (0.78 (95% CI, 0.74â0.82) versus 0.64 (95% CI, 0.60â0.67). LRM model also outperformed RP model in term of calibration. In these real datasets, LRM model outperformed RP model. It is therefore more suitable for clinical use
- âŠ