295 research outputs found
Observation of First-Order Metal-Insulator Transition without Structural Phase Transition in VO_2
An abrupt first-order metal-insulator transition (MIT) without structural
phase transition is first observed by current-voltage measurements and
micro-Raman scattering experiments, when a DC electric field is applied to a
Mott insulator VO_2 based two-terminal device. An abrupt current jump is
measured at a critical electric field. The Raman-shift frequency and the
bandwidth of the most predominant Raman-active A_g mode, excited by the
electric field, do not change through the abrupt MIT, while, they, excited by
temperature, pronouncedly soften and damp (structural MIT), respectively. This
structural MIT is found to occur secondarily.Comment: 4 pages, 4 figure
Temperature dependence of Mott transition in VO_2 and programmable critical temperature sensor
The temperature dependence of the Mott metal-insulator transition (MIT) is
studied with a VO_2-based two-terminal device. When a constant voltage is
applied to the device, an abrupt current jump is observed with temperature.
With increasing applied voltages, the transition temperature of the MIT current
jump decreases. We find a monoclinic and electronically correlated metal (MCM)
phase between the abrupt current jump and the structural phase transition
(SPT). After the transition from insulator to metal, a linear increase in
current (or conductivity) is shown with temperature until the current becomes a
constant maximum value above T_{SPT}=68^oC. The SPT is confirmed by micro-Raman
spectroscopy measurements. Optical microscopy analysis reveals the absence of
the local current path in micro scale in the VO_2 device. The current uniformly
flows throughout the surface of the VO_2 film when the MIT occurs. This device
can be used as a programmable critical temperature sensor.Comment: 4 pages, 3 figure
A new design of Doherty amplifiers using defected ground structure
In this letter, a new Doherty power amplifier having the ideal harmonic termination condition that has been usually ignored is proposed. A defected ground structure (DGS) is adopted on the ground pattern of the output lambda/4 impedance inverter of the carrier amplifier and output offset transmission line of the peaking amplifier that are essential for proper load modulation operation of a conventional Doherty amplifier. As a result of the second and third harmonic termination, excellent improvement in power added efficiency (PAE), gain, maximum output power as well as linearity is obtained. The acquired improvements in gain, maximum output power (P1 dB), PAE, and adjacent channel leakage ratio to wideband code division multiple access 2FA signal are 0.33 dB, 0.42 dB, 12.7%, and 5.1 dB, respectively. Moreover, physical length of microstrip line is shortened fairly by DGS, therefore the whole amplifier circuit size is considerably reduce
Monoclinic and Correlated Metal Phase in VO_2 as Evidence of the Mott Transition: Coherent Phonon Analysis
In femtosecond pump-probe measurements, the appearance of coherent phonon
oscillations at 4.5 THz and 6.0 THz indicating the rutile metal phase of VO_2
does not occur simultaneously with the first-order metal-insulator transition
(MIT) near 68^oC. The monoclinic and correlated metal(MCM) phase between the
MIT and the structural phase transition (SPT) is generated by a photo-assisted
hole excitation which is evidence of the Mott transition. The SPT between the
MCM phase and the rutile metal phase occurs due to subsequent Joule heating.
The MCM phase can be regarded as an intermediate non-equilibrium state.Comment: 4 pages, 2 figure
DECAY FACTOR WITH EXPERIMENTAL VARIABLES IN TWO CIRCULATING FLUIDIZED BED (CFB) RISERS
The effects of the riser inlet velocity, solid mass flux and particle size on the axial solid holdup profile and decay factor were investigated using two circulating fluidized beds (CFBs) with FCC (Geldart A) particles as the bed materials. Based on the experimental results from the two-CFBs, the axial solid holdup in the two CFBs were compared with the correlations of previous studies. Also, an empirical correlation was proposed for decay factor that exhibited a good agreement with experimental data
Intracellular Membrane Association of the Aplysia cAMP Phosphodiesterase Long and Short Forms via Different Targeting Mechanisms
Phosphodiesterases (PDEs) play key roles in cAMP compartmentalization, which is required for intracellular signaling processes, through specific subcellular targeting. Previously, we showed that the long and short forms of Aplysia PDE4 (ApPDE4), which are localized to the membranes of distinct subcellular organelles, play key roles in 5-hydroxytryptamineinduced synaptic facilitation in Aplysia sensory and motor synapses. However, the molecular mechanism of the isoform-specific distinct membrane targeting was not clear. In this study, we further investigated the molecular mechanism of the membrane targeting of the ApPDE4 long and short forms. We found that the membrane targeting of the long form was mediated by hydrophobic interactions, mainly via 16 amino acids at the N-terminal region, whereas the short form was targeted solely to the plasma membrane, mainly by nonspecific electrostatic interactions between theirNtermini and the negatively charged lipids such as the phosphatidylinositol polyphosphates PI4P and PI(4,5)P<inf>2</inf>, which are embedded in the inner leaflet of the plasma membrane. Moreover, oligomerization of the long or short form by interaction of their respective upstream conserved region domains, UCR1 and UCR2, enhanced their plasma membrane targeting. These results suggest that the long and short forms of ApPDE4 are distinctly targeted to intracellular membranes through their direct association with the membranes via hydrophobic and electrostatic interactions, respectively. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.1
Effects of PI3Kγ overexpression in the hippocampus on synaptic plasticity and spatial learning
Previous studies have shown that a family of phosphoinositide 3-kinases (PI3Ks) plays pivotal roles in the brain; in particular, we previously reported that knockout of the γ isoform of PI3K (PI3Kγ) in mice impaired synaptic plasticity and reduced behavioral flexibility. To further examine the role of PI3Kγ in synaptic plasticity and hippocampus-dependent behavioral tasks we overexpressed p110γ, the catalytic subunit of PI3Kγ, in the hippocampal CA1 region. We found that the overexpression of p110γ impairs NMDA receptor-dependent long-term depression (LTD) and hippocampus-dependent spatial learning in the Morris water maze (MWM) task. In contrast, long-term potentiation (LTP) and contextual fear memory were not affected by p110γ overexpression. These results, together with the previous knockout study, suggest that a critical level of PI3Kγ in the hippocampus is required for successful induction of LTD and normal learning
- …