65 research outputs found
Modelling of the upper atmosphere of gas-giant exoplanets irradiated by low-mass stars
Upper atmospheres of Hot Jupiters are subject to extreme radiation conditions that can result in rapid atmospheric escape. The composition and structure of the upper atmosphere of these planets are affected by the high-energy spectrum of the host star. This emission depends on stellar type and age, which are thus important factors in understanding the behaviour of exoplanetary atmospheres. The work descried in this thesis details the development of a new 1D ionospheric model to describe the upper atmospheres of Extrasolar Giant Plants (EGPs). The model is time-dependent and includes photo-chemistry and diffusive transport. Electron-impact ionisation processes are taken into account through coupling with a suprathermal electron transport code. Neutral composition and temperature profiles are obtained by using a thermospheric model that incorporates atmospheric escape. Atmospheres composed of H, H2, He, and their associated ions are considered.
Efforts have been made to obtain accurate X-ray and Extreme Ultraviolet (EUV) spectral irradiance of the stars studied. To this effect, synthetic spectra are used originating from a detailed coronal model for three different low-mass stars of different activity levels: epsilon Eridani, AD Leonis and AU Microscopii. This work is the first study of the ionosphere of EGPs that takes into account the different spectral energy distribution of low-mass stars.
In planets subjected to radiation from active stars, the transition from slow, Jeans escape to a regime of rapid hydrodynamic escape at the top of the atmosphere is found to occur at larger orbital distances than for planets around low activity stars (such as the Sun). To correctly estimate the critical orbital distance of this transition, the spectral shape of stellar XUV radiation is important. A novel method to scale the EUV region of the solar spectrum based upon stellar X-ray emission is developed in this work. This new method produces an outcome in terms of the planet's upper atmosphere and escape regime that is very similar to that obtained using a detailed coronal model of the host star.
EGP ionospheres at all orbital distances and around all stars studied are dominated by the long-lived H+ ion. In addition, planets in the Jeans escape regime also have a layer in which H3+ is the major ion at the base of the ionosphere. For fast-rotating planets, H3+ densities undergo significant diurnal variations, their peak value being determined by the stellar X-ray flux. In contrast, H+ densities show very little day/night variability and their value is determined by the level of stellar EUV flux. The H3+ peak in EGPs in the rapid hydrodynamic escape regime under strong stellar illumination is pushed to altitudes below the homopause, where this ion is likely to be destroyed through reactions with heavy species (C, O, etc.).Open Acces
XUV-driven mass loss from extrasolar giant planets orbiting active stars
Upper atmospheres of Hot Jupiters are subject to extreme radiation conditions that can result in rapid atmospheric escape. The composition and structure of the upper atmospheres of these planets are affected by the high-energy spectrum of the host star. This emission depends on stellar type and age, which are thus important factors in understanding the behaviour of exoplanetary atmospheres. In this study, we focus on Extrasolar Giant Planets (EPGs) orbiting K and M dwarf stars. XUV spectra for three different stars – ∊ Eridani, AD Leonis and AU Microscopii – are constructed using a coronal model. Neutral density and temperature profiles in the upper atmosphere of hypothetical EGPs orbiting these stars are then obtained from a fluid model, incorporating atmospheric chemistry and taking atmospheric escape into account. We find that a simple scaling based solely on the host star’s X-ray emission gives large errors in mass loss rates from planetary atmospheres and so we have derived a new method to scale the EUV regions of the solar spectrum based upon stellar X-ray emission. This new method produces an outcome in terms of the planet’s neutral upper atmosphere very similar to that obtained using a detailed coronal model of the host star. Our results indicate that in planets subjected to radiation from active stars, the transition from Jeans escape to a regime of hydrodynamic escape at the top of the atmosphere occurs at larger orbital distances than for planets around low activity stars (such as the Sun)
Effect of stellar flares on the upper atmospheres of HD 189733b and HD 209458b
Stellar flares are a frequent occurrence on young low-mass stars around which
many detected exoplanets orbit. Flares are energetic, impulsive events, and
their impact on exoplanetary atmospheres needs to be taken into account when
interpreting transit observations. We have developed a model to describe the
upper atmosphere of Extrasolar Giant Planets (EGPs) orbiting flaring stars. The
model simulates thermal escape from the upper atmospheres of close-in EGPs.
Ionisation by solar radiation and electron impact is included and photochemical
and diffusive transport processes are simulated. This model is used to study
the effect of stellar flares from the solar-like G star HD209458 and the young
K star HD189733 on their respective planets. A hypothetical HD209458b-like
planet orbiting the active M star AU Mic is also simulated. We find that the
neutral upper atmosphere of EGPs is not significantly affected by typical
flares. Therefore, stellar flares alone would not cause large enough changes in
planetary mass loss to explain the variations in HD189733b transit depth seen
in previous studies, although we show that it may be possible that an extreme
stellar proton event could result in the required mass loss. Our simulations do
however reveal an enhancement in electron number density in the ionosphere of
these planets, the peak of which is located in the layer where stellar X-rays
are absorbed. Electron densities are found to reach 2.2 to 3.5 times pre-flare
levels and enhanced electron densities last from about 3 to 10 hours after the
onset of the flare. The strength of the flare and the width of its spectral
energy distribution affect the range of altitudes that see enhancements in
ionisation. A large broadband continuum component in the XUV portion of the
flaring spectrum in very young flare stars, such as AU Mic, results in a broad
range of altitudes affected in planets orbiting this star.Comment: accepted for publication in A&
EUV-driven ionospheres and electron transport on extrasolar giant planets orbiting active stars
The composition and structure of the upper atmospheres of extrasolar giant planets (EGPs) are affected by the high-energy spectrum of their host stars from soft X-rays to the extreme ultraviolet (EUV). This emission depends on the activity level of the star, which is primarily determined by its age. In this study, we focus upon EGPs orbiting K- and M-dwarf stars of different ages – ϵ Eridani, AD Leonis, AU Microscopii – and the Sun. X-ray and EUV (XUV) spectra for these stars are constructed using a coronal model. These spectra are used to drive both a thermospheric model and an ionospheric model, providing densities of neutral and ion species. Ionisation – as a result of stellar radiation deposition – is included through photo-ionisation and electron-impact processes. The former is calculated by solving the Lambert-Beer law, while the latter is calculated from a supra-thermal electron transport model. We find that EGP ionospheres at all orbital distances considered (0.1−1 AU) and around all stars selected are dominated by the long-lived H+ ion. In addition, planets with upper atmospheres where H2 is not substantially dissociated (at large orbital distances) have a layer in which H3+ is the major ion at the base of the ionosphere. For fast-rotating planets, densities of short-lived H3+ undergo significant diurnal variations, with the maximum value being driven by the stellar X-ray flux. In contrast, densities of longer-lived H+ show very little day/night variability and the magnitude is driven by the level of stellar EUV flux. The H3+ peak in EGPs with upper atmospheres where H2 is dissociated (orbiting close to their star) under strong stellar illumination is pushed to altitudes below the homopause, where this ion is likely to be destroyed through reactions with heavy species (e.g. hydrocarbons, water). The inclusion of secondary ionisation processes produces significantly enhanced ion and electron densities at altitudes below the main EUV ionisation peak, as compared to models that do not include electron-impact ionisation. We estimate infrared emissions from H3+, and while, in an H/H2/He atmosphere, these are larger from planets orbiting close to more active stars, they still appear too low to be detected with current observatories
Purkinje Cell Activity Determines the Timing of Sensory-Evoked Motor Initiation
Cerebellar neurons can signal sensory and motor events, but their role in active sensorimotor processing remains unclear. We record and manipulate Purkinje cell activity during a task that requires mice to rapidly discriminate between multisensory and unisensory stimuli before motor initiation. Neuropixels recordings show that both sensory stimuli and motor initiation are represented by short-latency simple spikes. Optogenetic manipulation of short-latency simple spikes abolishes or delays motor initiation in a rate-dependent manner, indicating a role in motor initiation and its timing. Two-photon calcium imaging reveals task-related coherence of complex spikes organized into conserved alternating parasagittal stripes. The coherence of sensory-evoked complex spikes increases with learning and correlates with enhanced temporal precision of motor initiation. These results suggest that both simple spikes and complex spikes govern sensory-driven motor initiation: simple spikes modulate its latency, and complex spikes refine its temporal precision, providing specific cellular substrates for cerebellar sensorimotor control
Multiscale observation of two polar cap arcs occurring on different magnetic field topologies
This paper presents observations of polar cap arc substructure down to scale sizes of meters and temporal resolution of milliseconds. Two case studies containing polar cap arcs occurring over Svalbard are investigated. The first occurred on 4 February 2016 and is consistent with formation on closed field lines; the second occurred on 15 December 2015 and is consistent with formation on open field lines. These events were identified using global‐scale images from the Special Sensor Ultra‐violet Spectrographic Imager (SSUSI) instruments on board Defense Meteorological Satellite Program (DMSP) spacecraft. Intervals when the arcs passed through the small‐scale field of view of the Auroral Structure and Kinetics (ASK) instrument, located on Svalbard, were then found using all sky images from a camera also located on Svalbard. These observations give unprecedented insight into small‐scale polar cap arc structure. The energy and flux of the precipitating particles above these arcs are estimated using the ASK observations in conjunction with the Southampton Ionospheric model. These estimates are then compared to in situ DMSP particle measurements, as well as data from ground‐based instrumentation, to infer further information about their formation mechanisms. This paper finds that polar cap arcs formed on different magnetic field topologies exhibit different behavior at small‐scale sizes, consistent with their respective formation mechanisms
A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436b
Exoplanets orbiting close to their parent stars could lose some fraction of
their atmospheres because of the extreme irradiation. Atmospheric mass loss
primarily affects low-mass exoplanets, leading to suggest that hot rocky
planets might have begun as Neptune-like, but subsequently lost all of their
atmospheres; however, no confident measurements have hitherto been available.
The signature of this loss could be observed in the ultraviolet spectrum, when
the planet and its escaping atmosphere transit the star, giving rise to deeper
and longer transit signatures than in the optical spectrum. Here we report that
in the ultraviolet the Neptune-mass exoplanet GJ 436b (also known as Gliese
436b) has transit depths of 56.3 +/- 3.5% (1 sigma), far beyond the 0.69%
optical transit depth. The ultraviolet transits repeatedly start ~2 h before,
and end >3 h after the ~1 h optical transit, which is substantially different
from one previous claim (based on an inaccurate ephemeris). We infer from this
that the planet is surrounded and trailed by a large exospheric cloud composed
mainly of hydrogen atoms. We estimate a mass-loss rate in the range of
~10^8-10^9 g/s, which today is far too small to deplete the atmosphere of a
Neptune-like planet in the lifetime of the parent star, but would have been
much greater in the past.Comment: Published in Nature on 25 June 2015. Preprint is 28 pages, 12
figures, 2 table
Saturn's atmospheric response to the large influx of ring material inferred from Cassini INMS measurements
During the Grand Finale stage of the Cassini mission, organic-rich ring
material was discovered to be flowing into Saturn's equatorial upper atmosphere
at a surprisingly large rate. Through a series of photochemical models, we have
examined the consequences of this ring material on the chemistry of Saturn's
neutral and ionized atmosphere. We find that if a substantial fraction of this
material enters the atmosphere as vapor or becomes vaporized as the solid ring
particles ablate upon atmospheric entry, then the ring-derived vapor would
strongly affect the composition of Saturn's ionosphere and neutral
stratosphere. Our surveys of Cassini infrared and ultraviolet remote-sensing
data from the final few years of the mission, however, reveal none of these
predicted chemical consequences. We therefore conclude that either (1) the
inferred ring influx represents an anomalous, transient situation that was
triggered by some recent dynamical event in the ring system that occurred a few
months to a few tens of years before the 2017 end of the Cassini mission, or
(2) a large fraction of the incoming material must have been entering the
atmosphere as small dust particles less than ~100 nm in radius, rather than as
vapor or as large particles that are likely to ablate. Future observations or
upper limits for stratospheric neutral species such as HCN, HCN, and CO
at infrared wavelengths could shed light on the origin, timing, magnitude, and
nature of a possible vapor-rich ring-inflow event.Comment: accepted in Icaru
- …