53 research outputs found
Bioaccumulation and trophic transfer of methylmercury in Long Island Sound
Author Posting. © Springer, 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Archives of Environmental Contamination and Toxicology 51 (2006): 416-424, doi:10.1007/s00244-005-0265-7.Humans are exposed to methylmercury (MeHg) principally by consumption of marine fish. The coastal zone supports the majority of marine fish production, and may therefore be an important source of MeHg to humans; however, little is known about the bioaccumulation or MeHg in near-shore marine ecosystems. We examined MeHg in microseston, zooplankton, a decapod crustacean and four representative species of finfish that differ in trophic status and/or prey selection in Long Island Sound (LIS), a large coastal embayment in the northeastern United States. MeHg biomagnifies in LIS; levels in microseston were 104.2 greater than those in water and 2.3-fold less than zooplankton. MeHg concentrations were related positively to fish length for each species, but often varied considerably among larger individuals. This may be due to differences in the past dietary MeHg exposure of these fish, some of which are migratory. Sedimentary production and mobilization can account for most of the MeHg in microseston of LIS, and by extension, other near-shore locations. Hence, much of the MeHg in higher trophic levels of coastal marine ecosystems, including fishes destined for human consumption, may be attributed to net sedimentary production and dietary bioaccumulation.This study was supported by a STAR grant (R827635) and graduate student fellowship (U91591801) from the U.S. EPA, and the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Doherty Foundation
Measurements of acid volatile sulfide and simultaneously extracted metals are irreproducible among laboratories
Partitioning with solid phases is a principal control on availability and associated toxicity of metals to aquatic biota. In anoxic sediments, environmentally active fractions of sulfide and associated metals are defined operationally as acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM). Ratios of these chemical parameters are often used in establishing equilibrium partitioning sediment benchmarks for toxicity and, therefore, require analytical accuracy to be useful. To investigate the reproducibility and accuracy of AVS and SEM measurements, we distributed subsamples of four physicochemically disparate stream sediments to seven independent laboratories, including our own, for analysis of both AVS and SEM (Cd, Cu, Pb, Ni, and Zn). Synthesis of these results shows that AVS varied from 70 to 3,500Ă and SEM ranged from 17 to 60Ă among laboratories for each of the four sediments. Inadequate detection limits for AVS precluded calculation of SEM:AVS ratios for two of the deposits, whereas the ratio varied more than 50-fold among laboratories for the other two sediments. This work highlights the need for improved quality control and standardization of methods for determination of AVS and SEM in sediments, and suggests that predictions of metal toxicity in sediments can be laboratory specific, which raises concerns on the use of the AVS:SEM model for risk assessments and regulatory decisions. Environ. Toxicol. Chem. 2010;29:1453â1456. © 2010 SETACPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77432/1/173_ftp.pd
Speciation leads to divergent methylmercury accumulation in sympatric whitefish
Central European lake whitefish (Coregonus spp.) colonized Swiss lakes following the last glacial retreat and have undergone rapid speciation and adaptive radiation. Up to six species have been shown to coexist in some lakes, and individual species occupy specific ecological niches and have distinct feeding and reproductive ecologies. We studied methylmercury (MeHg) accumulation in sympatric whitefish species from seven Swiss lakes to determine if ecological divergence has led to different rates of MeHg bioaccumulation. In four of seven lakes, sympatric species had distinctly different MeHg levels, which varied by up to a factor of two between species. Generally, species with greater MeHg levels were smaller in body size and planktivorous, and species with lower MeHg were larger and benthivorous. While modest disparities in trophic position between species might be expected a priori to explain the divergence in MeHg, ÎŽ15N of bulk tissue did not correlate with fish MeHg in five of seven lakes. Results of a nested ANCOVA analysis across all lakes indicated that only two factors (species, lake) explained substantial portions of the variance, with species accounting for more variance (52%) than inter-lake differences (32%). We suggest that differences in MeHg accumulation were likely caused by diverging metabolic traits between species, such as differences in energy partitioning between anabolism and catabolism, potentially interacting with species-specific prey resource utilization. These results indicate substantial variability in MeHg accumulation between closely related fish species, illustrating that ecological speciation in fish can lead to divergent MeHg accumulation pattern
An intercomparison of procedures for the determination of total mercury in seawater and recommendations regarding mercury speciation during GEOTRACES cruises
Author Posting. © Association for the Sciences of Limnology and Oceanography, 2012. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography: Methods 10 (2012): 90-100, doi:10.4319/lom.2012.10.90.We conducted a laboratory intercomparison of total mercury (Hg) determination in seawater collected during U.S. GEOTRACES Intercalibration cruises in 2008 and 2009 to the NW Atlantic and NE Pacific Oceans. Results indicated substantial disagreement between the participating laboratories, which appeared to be affected most strongly by bottle cleanliness and preservation procedures. In addition, we examined the effectiveness of various collection and sample preparation procedures that may be used on future GEOTRACES cruises. The type of sampling system and filtration medium appeared to make little difference to results. Finally, and in light of results from experiments that considered sample bottle material effect and the development of new methods for CH3Hg+ extraction from seawater, we propose a recommended procedure for determining all four of the major Hg species in seawater (elemental, dimethyl-, monomethyl-, and total Hg).This work was supported by the National Science Foundation
program in Chemical Oceanography under grants OCEâ0825157,
â0825108, â0825583 and â0825068
Bioaccumulation and Biomagnification of Mercury and Methylmercury in Four Sympatric Coastal Sharks in a Protected Subtropical Lagoon
Mercury bioaccumulation is frequently observed in marine ecosystems, often with stronger effects at higher trophic levels. We compared total mercury (THg) and methylmercury (MeHg) from muscle with length, comparative isotopic niche, and diet (via ÎŽ13C and ÎŽ15N) among four sympatric coastal sharks in Florida Bay (USA): blacknose, blacktip, bull, and lemon. Mercury in blacknose and blacktip sharks increased significantly with size, whereas bull and lemon sharks had a high variance in mercury relative to size. Both ÎŽ13C and ÎŽ15N were consistent with general resource use and trophic position relationships across all species. A significant relationship was observed between ÎŽ13C and mercury in blacktip sharks, suggesting an ontogenetic shift isotopic niche, possibly a dietary change. Multiple regression showed that ÎŽ13C and ÎŽ15N were the strongest factors regarding mercury bioaccumulation in individuals across all species. Additional research is recommended to resolve the mechanisms that determine mercury biomagnification in individual shark species
Nutrient Supply and Mercury Dynamics in Marine Ecosystems: A Conceptual Model
There is increasing interest and concern over the impacts of mercury (Hg) inputs to marine 32 ecosystems. One of the challenges in assessing these effects is that the cycling and trophic 33 transfer of Hg are strongly linked to other contaminants and disturbances. In addition to Hg, a 34 major problem facing coastal waters is the impacts of elevated nutrient, particularly nitrogen 35 (N), inputs. Increases in nutrient loading alter coastal ecosystems in ways that should change 36 the transport, transformations and fate of Hg, including increases in fixation of organic carbon 37 and deposition to sediments, decreases in the redox status of sediments and changes in fish 38 habitat. In this paper we present a conceptual model which suggests that increases in loading 39 of reactive N to marine ecosystems might alter Hg dynamics, decreasing bioavailabilty and 40 trophic transfer. This conceptual model is most applicable to coastal waters, but may also be 41 relevant to the pelagic ocean. We present information from case studies that both support and 42 challenge this conceptual model, including marine observations across a nutrient gradient; 43 results of a nutrientâtrophic transfer Hg model for pelagic and coastal ecosystems; observations 44 of Hg species, and nutrients from coastal sediments in the northeastern U.S.; and an analysis of 45 fish Hg concentrations in estuaries under different nutrient loadings. These case studies suggest 46 that changes in nutrient loading can impact Hg dynamics in coastal and open ocean ecosystems. 47 Unfortunately none of the case studies is comprehensive; each only addresses a portion of the 48 conceptual model and has limitations. Nevertheless, our conceptual model has important 49 management implications. Many estuaries near developed areas are impaired due to elevated 50 nutrient inputs. Widespread efforts are underway to control N loading and restore coastal 51 ecosystem function. An unintended consequence of nutrient control measures could be to 3 exacerbate 52 problems associated with Hg contamination. Additional focused research and 53 monitoring are needed to critically examine the link between nutrient supply and Hg 54 contamination of marine waters
Hitting Reset on Sediment Toxicity: Sediment Homogenization Alters the Toxicity of MetalâAmended Sediments
Laboratory testing of sediments frequently involves manipulation by amendment with contaminants and homogenization, which changes the physicochemical structure of sediments. These changes can influence the bioavailability of divalent metals, and field and mesocosm experiments have shown that laboratoryâderived thresholds are often overly conservative. We assessed the mechanisms that lead to divergence between laboratoryâ and fieldâderived thresholds; specifically, we assessed the importance of slow equilibration to solidâphase ligands and vertical stratification. To mimic natural physicochemical conditions, we uniquely aged sediment with a flowâthrough exposure system. These sediments were then homogenized and compared, toxicologically, with freshly metalâamended sediments in a 28âd chronic toxicity bioassay with the amphipod Hyalella azteca. We assessed concentrationâresponse relationships for 3 metals (copper, nickel, and zinc) and 5 geochemically distinct sediments. We observed minimal differences in growth and survival of H. azteca between aged and freshly spiked sediments across all sediments and metals. These trends suggest that a loss of toxicity observed during longâterm sediment aging is reversed after sediment homogenization. By comparison with mesocosm experiments, we demonstrate that homogenizing sediment immediately before toxicity assays may produce artificially high toxicity thresholds. We suggest that toxicity assays with sediments that maintain vertical redox gradients are needed to generate fieldârelevant sediment metal toxicity thresholds. Environ Toxicol Chem 2019;38:1995â2007. © 2019 SETAC.Aging of sediment alone does not alter metal toxicity to amphipods, but it is the combination of aging and preserving natural redox gradients that can lower toxicity.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151311/1/etc4512.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151311/2/etc4512_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151311/3/etc4512-sup-0001-EMBOSST2_supp_31May2019.pd
Correction to âMercury and monomethylmercury in fluids from Sea Cliff submarine hydrothermal field, Gorda Ridgeâ
Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 34 (2007): L02603, doi:10.1029/2006GL028747
Methylmercury cycling in sediments on the continental shelf of southern New England
Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 70 (2006): 918-930, doi:10.1016/j.gca.2005.10.020.Exposure of humans to monomethylmercury (MMHg) occurs primarily through consumption of marine fish, yet there is limited understanding concerning the bioaccumulation and biogeochemistry of MMHg in the biologically productive coastal ocean. We examined the cycling of MMHg in sediments at three locations on the continental shelf of southern New England in September 2003. MMHg in surface sediments is related positively to inorganic Hg (Hg(II)=total Hg-MMHg), the geographical distribution of which is influenced by organic material. Organic matter also largely controls the sediment-water partitioning of Hg species and governs the availability of dissolved Hg(II) for methylation. Potential gross rates of MMHg production, assayed by experimental addition of 200Hg to intact sediment cores, are correlated inversely with the distribution coefficient (KD) of Hg(II) and positively with the concentration of Hg(II), most probably as HgS0, in 0.2-”m filtered pore water of these low-sulfide deposits. Moreover, the efflux of dissolved MMHg to overlying water (i.e., net production at steady state) is correlated with the gross potential rate of MMHg production in surface sediments. These results suggest that the production and efflux of MMHg from coastal marine sediments is limited by Hg(II), loadings of which presumably are principally from atmospheric deposition to this region of the continental shelf. The estimated diffusive flux of MMHg from the shelf sediments averages 9 pmol m-2 d-1. This flux is comparable to that required to sustain the current rate of MMHg accumulation by marine fish, and may be enhanced by the efflux of MMHg from near-shore deposits contaminated more substantially with anthropogenic Hg. Hence, production and subsequent mobilization of MMHg from sediments in the coastal zone may be a major source of MMHg to the ocean and marine biota, including fishes consumed by humans.This research was supported by a STAR student fellowship (U91591801) and grant (R827635) from the U.S. Environmental Protection Agency, a graduate student fellowship and grant from the Hudson River Foundation for Environmental Research, and the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Doherty Foundation
- âŠ