1,361 research outputs found
How long is long? Word length effects in reading correspond to minimal graphemic units: An MEG study in Bangla.
This paper presents a magnetoencephalography (MEG) study on reading in Bangla, an east Indo-Aryan language predominantly written in an abugida script. The study aims to uncover how visual stimuli are processed and mapped onto abstract linguistic representations in the brain. Specifically, we investigate the neural responses that correspond to word length in Bangla, a language with a unique orthography that introduces multiple ways to measure word length. Our results show that MEG signals localised in the anterior left fusiform gyrus, at around 130ms, are highly correlated with word length when measured in terms of the number of minimal graphemic units in the word rather than independent graphemic units (akśar) or phonemes. Our findings suggest that minimal graphemic units could serve as a suitable metric for measuring word length in non-alphabetic orthographies such as Bangla
A study of the -/- ratio in low-mass star forming regions
We use the deuteration of - to probe the physical
parameters of starless and protostellar cores, related to their evolutionary
states, and compare it to the -deuteration in order to
study possible differences between the deuteration of C- and N-bearing species.
We observed the main species -, the singly and doubly
deuterated species - and -, as
well as the isotopologue - toward 10 starless
cores and 5 protostars in the Taurus and Perseus Complexes. We examined the
correlation between the
(-)/(-) ratio and the dust
temperature along with the column density and the CO depletion
factor. The resulting
(-)/(-) ratio is within the
error bars consistent with in all starless cores with detected
-. This also accounts for the protostars except for the
source HH211, where we measure a high deuteration level of . The
deuteration of follows the same trend but is considerably
higher in the dynamically evolved core L1544. Toward the protostellar cores the
coolest objects show the largest deuterium fraction in
-. We show that the deuteration of
- can trace the early phases of star formation and is
comparable to that of . However, the largest
- deuteration level is found toward protostellar cores,
suggesting that while - is mainly frozen onto dust
grains in the central regions of starless cores, active deuteration is taking
place on ice
Restricted space ab initio models for double ionization by strong laser pulses
Double electron ionisation process occurs when an intense laser pulse
interacts with atoms or molecules. Exact {\it ab initio} numerical simulation
of such a situation is extremely computer resources demanding, thus often one
is forced to apply reduced dimensionality models to get insight into the
physics of the process. The performance of several algorithms for simulating
double electron ionization by strong femtosecond laser pulses are studied. The
obtained ionization yields and the momentum distributions of the released
electrons are compared, and the effects of the model dimensionality on the
ionization dynamics discussed
3-quasi-Sasakian manifolds
In the present paper we carry on a systematic study of 3-quasi-Sasakian
manifolds. In particular we prove that the three Reeb vector fields generate an
involutive distribution determining a canonical totally geodesic and Riemannian
foliation. Locally, the leaves of this foliation turn out to be Lie groups:
either the orthogonal group or an abelian one. We show that 3-quasi-Sasakian
manifolds have a well-defined rank, obtaining a rank-based classification.
Furthermore, we prove a splitting theorem for these manifolds assuming the
integrability of one of the almost product structures. Finally, we show that
the vertical distribution is a minimum of the corrected energy.Comment: 17 pages, minor modifications, references update
Fokker-Planck type equations for a simple gas and for a semi-relativistic Brownian motion from a relativistic kinetic theory
A covariant Fokker-Planck type equation for a simple gas and an equation for
the Brownian motion are derived from a relativistic kinetic theory based on the
Boltzmann equation. For the simple gas the dynamic friction four-vector and the
diffusion tensor are identified and written in terms of integrals which take
into account the collision processes. In the case of Brownian motion, the
Brownian particles are considered as non-relativistic whereas the background
gas behaves as a relativistic gas. A general expression for the
semi-relativistic viscous friction coefficient is obtained and the particular
case of constant differential cross-section is analyzed for which the
non-relativistic and ultra relativistic limiting cases are calculated.Comment: To appear in PR
Author Correction: Identification of minimal parameters for optimal suppression of chaos in dissipative driven systems
Correction to: Scientific Reports https://doi.org/10.1038/s41598-017-17969-9, published online 21 December 201
- …