152 research outputs found
Anticipatory postural adjustments in a bimanual load-lifting task in children with developmental coordination disorder
International audienceAIM Postural control is a fundamental component of action in which deficits have been shown to contribute to motor difficulties in children with developmental coordination disorder (DCD). The purpose of this study was to examine anticipatory postural adjustments (APAs) in children with DCD in a bimanual load-lifting task. METHOD Sixteen children with reported motor problems (two females, 14 males; mean age 9y; SD 2y) and 16 typically developing, age-matched children (six females, 10 males; mean age 9y; SD 2y) took part in the study. The task required the children to maintain a stable elbow angle, despite imposed or voluntary unloading of the forearm. APAs were assessed using electromyography and kinematics analysis. RESULTS Although children with DCD could compensate for the consequences of unloading, the results demonstrated that APAs were less efficient in children with DCD than in typically developing children. A positive and significant coefficient of regression between the flexor inhibition latency and the postural stabilization was only found in typically developing children. INTERPRETATION The impaired fine-tuning of the muscle contribution and the poor stabilization performances demonstrate poor predictive modelling in DCD
Disease characteristics, effectiveness, and safety of vestronidase alfa for the treatment of patients with mucopolysaccharidosis VII in a novel, longitudinal, multicenter disease monitoring program
Background: Mucopolysaccharidosis VII (MPS VII) is an ultra-rare, autosomal recessive, debilitating, progressive lysosomal storage disease caused by reduced activity of ÎČ-glucuronidase (GUS) enzyme. Vestronidase alfa (recombinant human GUS) intravenous enzyme replacement therapy is an approved treatment for patients with MPS VII. Methods: This disease monitoring program (DMP) is an ongoing, multicenter observational study collecting standardized real-world data from patients with MPS VII (N â 50 planned) treated with vestronidase alfa or any other management approach. Data are monitored and recorded in compliance with Good Clinical Practice guidelines and planned interim analyses of captured data are performed annually. Here we summarize the safety and efficacy outcomes as of 17 November 2022. Results: As of the data cutoff date, 35 patients were enrolled: 28 in the Treated Group and seven in the Untreated Group. Mean (SD) age at MPS VII diagnosis was 4.5 (4.0) years (range, 0.0 to 12.4 years), and mean (SD) age at DMP enrollment was 13.9 (11.1) years (range, 1.5 to 50.2 years). Ten patients (29%) had a history of nonimmune hydrops fetalis. In the 23 patients who initiated treatment prior to DMP enrollment, substantial changes in mean excretion from initial baseline to DMP enrollment were observed for the three urinary glycosaminoglycans (uGAGs): dermatan sulfate (DS), -84%; chondroitin sulfate (CS), -55%; heparan sulfate (HS), -42%. Also in this group, mean reduction from initial baseline to months 6, 12, and 24 were maintained for uGAG DS (-84%, -87%, -89%, respectively), CS (-70%, -71%, -76%, respectively), and HS (+ 3%, -32%, and â 41%, respectively). All adverse events (AEs) were consistent with the known vestronidase alfa safety profile. No patients discontinued vestronidase alfa. One patient died. Conclusions: To date, the DMP has collected invaluable MPS VII disease characteristic data. The benefit-risk profile of vestronidase alfa remains unchanged and favorable for its use in the treatment of pediatric and adult patients with MPS VII. Reductions in DS and CS uGAG demonstrate effectiveness of vestronidase alfa to Month 24. Enrollment is ongoing.</p
Exhaustive analysis of BH4 and dopamine biosynthesis genes in patients with Dopa-responsive dystonia
Dopa-responsive dystonia is a childhood-onset dystonic disorder, characterized by a dramatic response to low dose of l-Dopa. Dopa-responsive dystonia is mostly caused by autosomal dominant mutations in the GCH1 gene (GTP cyclohydrolase1) and more rarely by autosomal recessive mutations in the TH (tyrosine hydroxylase) or SPR (sepiapterin reductase) genes. In addition, mutations in the PARK2 gene (parkin) which causes autosomal recessive juvenile parkinsonism may present as Dopa-responsive dystonia. In order to evaluate the relative frequency of the mutations in these genes, but also in the genes involved in the biosynthesis and recycling of BH4, and to evaluate the associated clinical spectrum, we have studied a large series of index patients (n = 64) with Dopa-responsive dystonia, in whom dystonia improved by at least 50% after l-Dopa treatment. Fifty seven of these patients were classified as pure Dopa-responsive dystonia and seven as Dopa-responsive dystonia-plus syndromes. All patients were screened for point mutations and large rearrangements in the GCH1 gene, followed by sequencing of the TH and SPR genes, then PTS (pyruvoyl tetrahydropterin synthase), PCBD (pterin-4a-carbinolamine dehydratase), QDPR (dihydropteridin reductase) and PARK2 (parkin) genes. We identified 34 different heterozygous point mutations in 40 patients, and six different large deletions in seven patients in the GCH1 gene. Except for one patient with mental retardation and a large deletion of 2.3 Mb encompassing 10 genes, all patients had stereotyped clinical features, characterized by pure Dopa-responsive dystonia with onset in the lower limbs and an excellent response to low doses of l-Dopa. Dystonia started in the first decade of life in 40 patients (85%) and before the age of 1 year in one patient (2.2%). Three of the 17 negative GCH1 patients had mutations in the TH gene, two in the SPR gene and one in the PARK2 gene. No mutations in the three genes involved in the biosynthesis and recycling of BH4 were identified. The clinical presentations of patients with mutations in TH and SPR genes were strikingly more complex, characterized by mental retardation, oculogyric crises and parkinsonism and they were all classified as Dopa-responsive dystonia-plus syndromes. Patient with mutation in the PARK2 gene had Dopa-responsive dystonia with a good improvement with l-Dopa, similar to Dopa-responsive dystonia secondary to GCH1 mutations. Although the yield of mutations exceeds 80% in pure Dopa-responsive dystonia and Dopa-responsive dystonia-plus syndromes groups, the genes involved are clearly different: GCH1 in the former and TH and SPR in the late
Quantitative analysis of the natural history of prolidase deficiency: description of 17 families and systematic review of published cases.
PURPOSE: Prolidase deficiency is a rare inborn error of metabolism causing ulcers and other skin disorders, splenomegaly, developmental delay, and recurrent infections. Most of the literature is constituted of isolated case reports. We aim to provide a quantitative description of the natural history of the condition by describing 19 affected individuals and reviewing the literature. METHODS: Nineteen patients were phenotyped per local institutional procedures. A systematic review following PRISMA criteria identified 132 articles describing 161 patients. Main outcome analyses were performed for manifestation frequency, diagnostic delay, overall survival, symptom-free survival, and ulcer-free survival. RESULTS: Our cohort presented a wide variability of severity. Autoimmune disorders were found in 6/19, including Crohn disease, systemic lupus erythematosus, and arthritis. Another immune finding was hemophagocytic lymphohistiocytosis (HLH). Half of published patients were symptomatic by age 4 and had a delayed diagnosis (mean delay 11.6 years). Ulcers were present initially in only 30% of cases, with a median age of onset at 12 years old. CONCLUSION: Prolidase deficiency has a broad range of manifestations. Symptoms at onset may be nonspecific, likely contributing to the diagnostic delay. Testing for this disorder should be considered in any child with unexplained autoimmunity, lower extremity ulcers, splenomegaly, or HLH
Bone Marrow Transplant
Mucopolysaccharidosis type I-H (MPS I-H) is a rare lysosomal storage disorder caused by α-L-Iduronidase deficiency. Early haematopoietic stem cell transplantation (HSCT) is the sole available therapeutic option to preserve neurocognitive functions. We report long-term follow-up (median 9 years, interquartile range 8-16.5) for 51 MPS I-H patients who underwent HSCT between 1986 and 2018 in France. 4 patients died from complications of HSCT and one from disease progression. Complete chimerism and normal α-L-Iduronidase activity were obtained in 84% and 71% of patients respectively. No difference of outcomes was observed between bone marrow and cord blood stem cell sources. All patients acquired independent walking and 91% and 78% acquired intelligible language or reading and writing. Intelligence Quotient evaluation (nâ=â23) showed that 69% had IQââ„â70 at last follow-up. 58% of patients had normal or remedial schooling and 62% of the 13 adults had good socio-professional insertion. Skeletal dysplasia as well as vision and hearing impairments progressed despite HSCT, with significant disability. These results provide a long-term assessment of HSCT efficacy in MPS I-H and could be useful in the evaluation of novel promising treatments such as gene therapy
Glucose transporter-1 deficiency syndrome: the expanding clinical and genetic spectrum of a treatable disorder
Glucose transporter-1 deficiency syndrome is caused by mutations in the SLC2A1 gene in the majority of patients and results in impaired glucose transport into the brain. From 2004-2008, 132 requests for mutational analysis of the SLC2A1 gene were studied by automated Sanger sequencing and multiplex ligation-dependent probe amplification. Mutations in the SLC2A1 gene were detected in 54 patients (41%) and subsequently in three clinically affected family members. In these 57 patients we identified 49 different mutations, including six multiple exon deletions, six known mutations and 37 novel mutations (13 missense, five nonsense, 13 frame shift, four splice site and two translation initiation mutations). Clinical data were retrospectively collected from referring physicians by means of a questionnaire. Three different phenotypes were recognized: (i) the classical phenotype (84%), subdivided into early-onset (<2 years) (65%) and late-onset (18%); (ii) a non-classical phenotype, with mental retardation and movement disorder, without epilepsy (15%); and (iii) one adult case of glucose transporter-1 deficiency syndrome with minimal symptoms. Recognizing glucose transporter-1 deficiency syndrome is important, since a ketogenic diet was effective in most of the patients with epilepsy (86%) and also reduced movement disorders in 48% of the patients with a classical phenotype and 71% of the patients with a non-classical phenotype. The average delay in diagnosing classical glucose transporter-1 deficiency syndrome was 6.6 years (range 1 month-16 years). Cerebrospinal fluid glucose was below 2.5 mmol/l (range 0.9-2.4 mmol/l) in all patients and cerebrospinal fluid : blood glucose ratio was below 0.50 in all but one patient (range 0.19-0.52). Cerebrospinal fluid lactate was low to normal in all patients. Our relatively large series of 57 patients with glucose transporter-1 deficiency syndrome allowed us to identify correlations between genotype, phenotype and biochemical data. Type of mutation was related to the severity of mental retardation and the presence of complex movement disorders. Cerebrospinal fluid : blood glucose ratio was related to type of mutation and phenotype. In conclusion, a substantial number of the patients with glucose transporter-1 deficiency syndrome do not have epilepsy. Our study demonstrates that a lumbar puncture provides the diagnostic clue to glucose transporter-1 deficiency syndrome and can thereby dramatically reduce diagnostic delay to allow early start of the ketogenic die
Expanding the clinical spectrum of hereditary fibrosing poikiloderma with tendon contractures, myopathy and pulmonary fibrosis due to <i>FAM111B </i>mutations
BACKGROUND: Hereditary Fibrosing Poikiloderma (HFP) with tendon contractures, myopathy and pulmonary fibrosis (POIKTMP [MIM 615704]) is a very recently described entity of syndromic inherited poikiloderma. Previously by using whole exome sequencing in five families, we identified the causative gene, FAM111B (NM_198947.3), the function of which is still unknown. Our objective in this study was to better define the specific features of POIKTMP through a larger series of patients. METHODS: Clinical and molecular data of two families and eight independent sporadic cases, including six new cases, were collected. RESULTS: Key features consist of: (i) early-onset poikiloderma, hypotrichosis and hypohidrosis; (ii) multiple contractures, in particular triceps surae muscle contractures; (iii) diffuse progressive muscular weakness; (iv) pulmonary fibrosis in adulthood and (v) other features including exocrine pancreatic insufficiency, liver impairment and growth retardation. Muscle magnetic resonance imaging was informative and showed muscle atrophy and fatty infiltration. Histological examination of skeletal muscle revealed extensive fibroadipose tissue infiltration. Microscopy of the skin showed a scleroderma-like aspect with fibrosis and alterations of the elastic network. FAM111B gene analysis identified five different missense variants (two recurrent mutations were found respectively in three and four independent families). All the mutations were predicted to localize in the trypsin-like cysteine/serine peptidase domain of the protein. We suggest gain-of-function or dominant-negative mutations resulting in FAM111B enzymatic activity changes. CONCLUSIONS: HFP with tendon contractures, myopathy and pulmonary fibrosis, is a multisystemic disorder due to autosomal dominant FAM111B mutations. Future functional studies will help in understanding the specific pathological process of this fibrosing disorder
- âŠ