34 research outputs found
Tissue Compartment Analysis for Biomarker Discovery by Gene Expression Profiling
BACKGROUND:Although high throughput technologies for gene profiling are reliable tools, sample/tissue heterogeneity limits their outcomes when applied to identify molecular markers. Indeed, inter-sample differences in cell composition contribute to scatter the data, preventing detection of small but relevant changes in gene expression level. To date, attempts to circumvent this difficulty were based on isolation of the different cell structures constituting biological samples. As an alternate approach, we developed a tissue compartment analysis (TCA) method to assess the cell composition of tissue samples, and applied it to standardize data and to identify biomarkers. METHODOLOGY/PRINCIPAL FINDINGS:TCA is based on the comparison of mRNA expression levels of specific markers of the different constitutive structures in pure isolated structures, on the one hand, and in the whole sample on the other. TCA method was here developed with human kidney samples, as an example of highly heterogeneous organ. It was validated by comparison of the data with those obtained by histo-morphometry. TCA demonstrated the extreme variety of composition of kidney samples, with abundance of specific structures varying from 5 to 95% of the whole sample. TCA permitted to accurately standardize gene expression level amongst >100 kidney biopsies, and to identify otherwise imperceptible molecular disease markers. CONCLUSIONS/SIGNIFICANCE:Because TCA does not require specific preparation of sample, it can be applied to all existing tissue or cDNA libraries or to published data sets, inasmuch specific operational compartments markers are available. In human, where the small size of tissue samples collected in clinical practice accounts for high structural diversity, TCA is well suited for the identification of molecular markers of diseases, and the follow up of identified markers in single patients for diagnosis/prognosis and evaluation of therapy efficiency. In laboratory animals, TCA will interestingly be applied to central nervous system where tissue heterogeneity is a limiting factor
Expression Profile of Nuclear Receptors along Male Mouse Nephron Segments Reveals a Link between ERRβ and Thick Ascending Limb Function
The nuclear receptor family orchestrates many functions related to reproduction, development, metabolism, and adaptation to the circadian cycle. The majority of these receptors are expressed in the kidney, but their exact quantitative localization in this ultrastructured organ remains poorly described, making it difficult to elucidate the renal function of these receptors. In this report, using quantitative PCR on microdissected mouse renal tubules, we established a detailed quantitative expression map of nuclear receptors along the nephron. This map can serve to identify nuclear receptors with specific localization. Thus, we unexpectedly found that the estrogen-related receptor β (ERRβ) is expressed predominantly in the thick ascending limb (TAL) and, to a much lesser extent, in the distal convoluted tubules. In vivo treatment with an ERR inverse agonist (diethylstilbestrol) showed a link between this receptor family and the expression of the Na+,K+-2Cl− cotransporter type 2 (NKCC2), and resulted in phenotype presenting some similarities with the Bartter syndrom (hypokalemia, urinary Na+ loss and volume contraction). Conversely, stimulation of ERRβ with a selective agonist (GSK4716) in a TAL cell line stimulated NKCC2 expression. All together, these results provide broad information regarding the renal expression of all members of the nuclear receptor family and have allowed us to identify a new regulator of ion transport in the TAL segments
Over-expression of adenosine deaminase in mouse podocytes does not reverse puromycin aminonucleoside resistance
<p>Abstract</p> <p>Background</p> <p>Edema in nephrotic syndrome results from renal retention of sodium and alteration of the permeability properties of capillaries. Nephrotic syndrome induced by puromycin aminonucleoside (PAN) in rats reproduces the biological and clinical signs of the human disease, and has been widely used to identify the cellular mechanisms of sodium retention. Unfortunately, mice do not develop nephrotic syndrome in response to PAN, and we still lack a good mouse model of the disease in which the genetic tools necessary for further characterizing the pathophysiological pathway could be used. Mouse resistance to PAN has been attributed to a defect in glomerular adenosine deaminase (ADA), which metabolizes PAN. We therefore attempted to develop a mouse line sensitive to PAN through induction of normal adenosine metabolism in their podocytes.</p> <p>Methods</p> <p>A mouse line expressing functional ADA under the control of the podocyte-specific podocin promoter was generated by transgenesis. The effect of PAN on urinary excretion of sodium and proteins was compared in rats and in mice over-expressing ADA and in littermates.</p> <p>Results</p> <p>We confirmed that expression of ADA mRNAs was much lower in wild type mouse than in rat glomerulus. Transgenic mice expressed ADA specifically in the glomerulus, and their ADA activity was of the same order of magnitude as in rats. Nonetheless, ADA transgenic mice remained insensitive to PAN treatment in terms of both proteinuria and sodium retention.</p> <p>Conclusions</p> <p>Along with previous results, this study shows that adenosine deaminase is necessary but not sufficient to confer PAN sensitivity to podocytes. ADA transgenic mice could be used as a background strain for further transgenesis.</p
A human glomerular SAGE transcriptome database
Background: To facilitate in the identification of gene products important in regulating renal glomerular structure and function, we have produced an annotated transcriptome database for normal human glomeruli using the SAGE approach. Description: The database contains 22,907 unique SAGE tag sequences, with a total tag count of 48,905. For each SAGE tag, the ratio of its frequency in glomeruli relative to that in 115 non-glomerular tissues or cells, a measure of transcript enrichment in glomeruli, was calculated. A total of 133 SAGE tags representing well-characterized transcripts were enriched 10-fold or more in glomeruli compared to other tissues. Comparison of data from this study with a previous human glomerular Sau3A-anchored SAGE library reveals that 47 of the highly enriched transcripts are common to both libraries. Among these are the SAGE tags representing many podocyte-predominant transcripts like WT-1, podocin and synaptopodin. Enrichment of podocyte transcript tags SAGE library indicates that other SAGE tags observed at much higher frequencies in this glomerular compared to non-glomerular SAGE libraries are likely to be glomerulus-predominant. A higher level of mRNA expression for 19 transcripts represented by glomerulus-enriched SAGE tags was verified by RT-PCR comparing glomeruli to lung, liver and spleen. Conclusions: The database can be retrieved from, or interrogated online at http://cgap.nci.nih.gov/SAGE. The annotated database is also provided as an additional file with gene identification for 9,022, and matches to the human genome or transcript homologs in other species for 1,433 tags. It should be a useful tool for in silico mining of glomerular gene expression
Toward quantitative proteomics of organ substructures: implications for renal physiology
Organs are complex structures that consist of multiple tissues with different levels of gene expression. To achieve comprehensive coverage and accurate quantitation data, organs ideally should be separated into morphologic and/or functional substructures before gene or protein expression analysis. However, because of complex morphology and elaborate isolation protocols, to date this often has been difficult to achieve. Kidneys are organs in which functional and morphologic subdivision is especially important. Each subunit of the kidney, the nephron, consists of more than 10 subsegments with distinct morphologic and functional characteristics. For a full understanding of kidney physiology, global gene and protein expression analyses have to be performed at the level of the nephron subsegments; however, such studies have been extremely rare to date. Here we describe the latest approaches in quantitative high-accuracy mass spectrometry-based proteomics and their application to quantitative proteomics studies of the whole kidney and nephron subsegments, both in human beings and in animal models. We compare these studies with similar studies performed on other organ substructures. We argue that the newest technologies used for preparation, processing, and measurement of small amounts of starting material are finally enabling global and subsegment-specific quantitative measurement of protein levels in the kidney and other organs. These new technologies and approaches are making a decisive impact on our understanding of the (patho)physiological processes at the molecular level
Fasting Induces the Expression of PGC-1α and ERR Isoforms in the Outer Stripe of the Outer Medulla (OSOM) of the Mouse Kidney
Peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α) is a member of the transcriptional coactivator family that plays a central role in the regulation of cellular energy metabolism under various physiological stimuli. During fasting, PGC-1α is induced in the liver and together with estrogen-related receptor a and γ (ERRα and ERRγ, orphan nuclear receptors with no known endogenous ligand, regulate sets of genes that participate in the energy balance program. We found that PGC-1α, ERRα and ERRγ was highly expressed in human kidney HK2 cells and that PGC-1α induced dynamic protein interactions on the ERRα chromatin. However, the effect of fasting on the expression of endogenous PGC-1α, ERRα and ERRγ in the kidney is not known.In this study, we demonstrated by qPCR that the expression of PGC-1α, ERRα and ERRγ was increased in the mouse kidney after fasting. By using immunohistochemistry (IHC), we showed these three proteins are co-localized in the outer stripe of the outer medulla (OSOM) of the mouse kidney. We were able to collect this region from the kidney using the Laser Capture Microdissection (LCM) technique. The qPCR data showed significant increase of PGC-1α, ERRα and ERRγ mRNA in the LCM samples after fasting for 24 hours. Furthermore, the known ERRα target genes, mitochondrial oxidative phosphorylation gene COX8H and the tricarboxylic acid (TCA) cycle gene IDH3A also showed an increase. Taken together, our data suggest that fasting activates the energy balance program in the OSOM of the kidney
Genomic Analysis in Nephrology – towards Systems Biology and Systematic Medicine?
With the advent of transcriptome profiling techniques, an enormous amount of data has been generated in the field of molecular nephrology. We will review analysis tools and challenges for genomic approaches and present their application in gene-expression studies on kidney biopsies. The findings in this rapidly evolving field may ultimately complement histopathological analysis, the current diagnostic and prognostic gold standard. Altogether, genomics may bring nephrology one-step closer to a systematic understanding of biological processes involved in renal disease
The rediscovery of uromodulin (Tamm-Horsfall protein): from tubulointerstitial nephropathy to chronic kidney disease
Uromodulin (Tamm-Horsfall protein) is the most abundant protein excreted in the urine under physiological conditions. It is exclusively produced in the kidney and secreted into the urine via proteolytic cleavage. Its biological function is still not fully understood. Uromodulin has been linked to water/electrolyte balance and to kidney innate immunity. Also, studies in knockout mice demonstrated that it has a protective role against urinary tract infections and renal stone formation. Mutations in the gene encoding uromodulin lead to rare autosomal dominant diseases, collectively referred to as uromodulin-associated kidney diseases. They are characterized by progressive tubulointerstitial damage, impaired urinary concentrating ability, hyperuricemia, renal cysts, and progressive renal failure. Novel in vivo studies point at intracellular accumulation of mutant uromodulin as a key primary event in the disease pathogenesis. Recently, genome-wide association studies identified uromodulin as a risk factor for chronic kidney disease (CKD) and hypertension, and suggested that the level of uromodulin in the urine could represent a useful biomarker for the development of CKD. In this review, we summarize these recent investigations, ranging from invalidation studies in mouse to Mendelian disorders and genome-wide associations, which led to a rediscovery of uromodulin and boosted the scientific and clinical interest for this long discovered molecule