71 research outputs found

    Computer-aided planning for zygomatic bone reconstruction in maxillofacial traumatology

    Get PDF
    An optimal planning procedure has been proposed to define the target position of the zygomatic bone following a fracture of the mid-face skeleton. The protocol has been successfully tested on healthy subjects, and ensures the global symmetry of the face could be obtained after the reconstruction surgery. Now that the planning procedure is available, the next step of this project will be to develop an intra-operative guiding system to help the surgeon to follow the planning. This procedure will mainly rely on the intra-operative registration of the zygomatic bone fragment, and the design of specific surgical ancillaries for cranio-maxillofacial surgery

    Biomechanics applied to computer-aided diagnosis: examples of orbital and maxillofacial surgeries

    Get PDF
    This paper introduces the methodology proposed by our group to model the biological soft tissues deformations and to couple these models with Computer-Assisted Surgical (CAS) applications. After designing CAS protocols that mainly focused on bony structures, the Computer Aided Medical Imaging group of Laboratory TIMC (CNRS, France) now tries to take into account the behaviour of soft tissues in the CAS context. For this, a methodology, originally published under the name of the Mesh-Matching method, has been proposed to elaborate patient specific models. Starting from an elaborate manually-built "generic" Finite Element (FE) model of a given anatomical structure, models adapted to the geometries of each new patient ("patient specific" FE models) are automatically generated through a non-linear elastic registration algorithm. This paper presents the general methodology of the Mesh-Matching method and illustrates this process with two clinical applications, namely the orbital and the maxillofacial computer-assisted surgeries

    Comparison of linear and non-linear soft tissue models with post-operative CT scan in maxillofacial surgery

    Get PDF
    A Finite Element model of the face soft tissue is proposed to simulate the morphological outcomes of maxillofacial surgery. Three modelling options are implemented: a linear elastic model with small and large deformation hypothesis, and an hyperelastic Mooney-Rivlin model. An evaluation procedure based on a qualitative and quantitative comparison of the simulations with a post-operative CT scan is detailed. It is then applied to one clinical case to evaluate the differences between the three models, and with the actual patient morphology. First results shows in particular that for a “simple” clinical procedure where stress is less than 20%, a linear model seams sufficient for a correct modelling
    • …
    corecore