2 research outputs found

    Quantum catastrophe of slow light

    Get PDF
    Catastrophes are at the heart of many fascinating optical phenomena. The rainbow, for example, is a ray catastrophe where light rays become infinitely intense. The wave nature of light resolves the infinities of ray catastrophes while drawing delicate interference patterns such as the supernumerary arcs of the rainbow. Black holes cause wave singularities. Waves oscillate with infinitely small wave lengths at the event horizon where time stands still. The quantum nature of light avoids this higher level of catastrophic behaviour while producing a quantum phenomenon known as Hawking radiation. As this letter describes, light brought to a standstill in laboratory experiments can suffer a similar wave singularity caused by a parabolic profile of the group velocity. In turn, the quantum vacuum is forced to create photon pairs with a characteristic spectrum. The idea may initiate a theory of quantum catastrophes, in addition to classical catastrophe theory, and the proposed experiment may lead to the first direct observation of a phenomenon related to Hawking radiation.Comment: Published as "A laboratory analogue of the event horizon using slow light in an atomic medium
    corecore