1 research outputs found

    Surface Gap Soliton Ground States for the Nonlinear Schr\"{o}dinger Equation

    Full text link
    We consider the nonlinear Schr\"{o}dinger equation (Δ+V(x))u=Γ(x)up1u(-\Delta +V(x))u = \Gamma(x) |u|^{p-1}u, xRnx\in \R^n with V(x)=V1(x)χ{x1>0}(x)+V2(x)χ{x1<0}(x)V(x) = V_1(x) \chi_{\{x_1>0\}}(x)+V_2(x) \chi_{\{x_1<0\}}(x) and Γ(x)=Γ1(x)χ{x1>0}(x)+Γ2(x)χ{x1<0}(x)\Gamma(x) = \Gamma_1(x) \chi_{\{x_1>0\}}(x)+\Gamma_2(x) \chi_{\{x_1<0\}}(x) and with V1,V2,Γ1,Γ2V_1, V_2, \Gamma_1, \Gamma_2 periodic in each coordinate direction. This problem describes the interface of two periodic media, e.g. photonic crystals. We study the existence of ground state H1H^1 solutions (surface gap soliton ground states) for 0<minσ(Δ+V)0<\min \sigma(-\Delta +V). Using a concentration compactness argument, we provide an abstract criterion for the existence based on ground state energies of each periodic problem (with VV1,ΓΓ1V\equiv V_1, \Gamma\equiv \Gamma_1 and VV2,ΓΓ2V\equiv V_2, \Gamma\equiv \Gamma_2) as well as a more practical criterion based on ground states themselves. Examples of interfaces satisfying these criteria are provided. In 1D it is shown that, surprisingly, the criteria can be reduced to conditions on the linear Bloch waves of the operators d2dx2+V1(x)-\tfrac{d^2}{dx^2} +V_1(x) and d2dx2+V2(x)-\tfrac{d^2}{dx^2} +V_2(x).Comment: definition of ground and bound states added, assumption (H2) weakened (sign changing nonlinearity is now allowed); 33 pages, 4 figure
    corecore