3,106 research outputs found

    Wave-number dependence of the transitions between traveling and standing vortex waves and their mixed states in the Taylor-Couette system

    Full text link
    Previous numerical investigations of the stability and bifurcation properties of different nonlinear combination structures of spiral vortices in a counterrotating Taylor-Couette system that were done for fixed axial wavelengths are supplemented by exploring the dependence of the vortex phenomena waves on their wavelength. This yields information about the experimental and numerical accessability of the various bifurcation scenarios. Also backwards bifurcating standing waves with oscillating amplitudes of the constituent traveling waves are found.Comment: 4 pages, 5 figure

    Bifurcation of standing waves into a pair of oppositely traveling waves with oscillating amplitudes caused by a three-mode interaction

    Full text link
    A novel flow state consisting of two oppositely travelling waves (TWs) with oscillating amplitudes has been found in the counterrotating Taylor-Couette system by full numerical simulations. This structure bifurcates out of axially standing waves that are nonlinear superpositions of left and right handed spiral vortex waves with equal time-independent amplitudes. Beyond a critical driving the two spiral TW modes start to oscillate in counterphase due to a Hopf bifurcation. The trigger for this bifurcation is provided by a nonlinearly excited mode of different symmetry than the spiral TWs. A three-mode coupled amplitude equation model is presented that captures this bifurcation scenario. The mode-coupling between two symmetry degenerate critical modes and a nonlinearly excited one that is contained in the model can be expected to occur in other structure forming systems as well.Comment: 4 pages, 5 figure

    Spiral vortices traveling between two rotating defects in the Taylor-Couette system

    Full text link
    Numerical calculations of vortex flows in Taylor-Couette systems with counter rotating cylinders are presented. The full, time dependent Navier-Stokes equations are solved with a combination of a finite difference and a Galerkin method. Annular gaps of radius ratio η=0.5\eta=0.5 and of several heights are simulated. They are closed by nonrotating lids that produce localized Ekman vortices in their vicinity and that prevent axial phase propagation of spiral vortices. Existence and spatio temporal properties of rotating defects, of modulated Ekman vortices, and of the spiral vortex structures in the bulk are elucidated in quantitative detail.Comment: 9 pages, 9 figure

    Competition between Traveling Fluid Waves of Left and Right Spiral Vortices and Their Different Amplitude Combinations

    Full text link
    Stability, bifurcation properties, and the spatiotemporal behavior of different nonlinear combination structures of spiral vortices in the counter rotating Taylor-Couette system are investigated by full numerical simulations and by coupled amplitude equation approximations. Stable cross-spiral structures with continuously varying content of left and right spiral modes are found. They provide a stability transferring connection between the initially stable, axially counter propagating wave states of pure spirals and the axially standing waves of so-called ribbons that become stable slightly further away from onset of vortex flow.Comment: 4 pages, 5 figure

    Controlling the stability transfer between oppositely traveling waves and standing waves by inversion-symmetry-breaking perturbations

    Get PDF
    The effect of an externally applied flow on symmetry degenerated waves propagating into opposite directions and standing waves that exchange stability with the traveling waves via mixed states is analyzed. Wave structures that consist of spiral vortices in the counter rotating Taylor-Couette system are investigated by full numerical simulations and explained quantitatively by amplitude equations containing quintic coupling terms. The latter are appropriate to describe the influence of inversion symmetry breaking perturbations on many oscillatory instabilities with O(2) symmetry.Comment: 4 pages, 4 figure

    The Effects of Additives on the Physical Properties of Electroformed Nickel and on the Stretch of Photoelectroformed Nickel Components

    Full text link
    The process of nickel electroforming is becoming increasingly important in the manufacture of MST products, as it has the potential to replicate complex geometries with extremely high fidelity. Electroforming of nickel uses multi-component electrolyte formulations in order to maximise desirable product properties. In addition to nickel sulphamate (the major electrolyte component), formulation additives can also comprise nickel chloride (to increase nickel anode dissolution), sulphamic acid (to control pH), boric acid (to act as a pH buffer), hardening/levelling agents (to increase deposit hardness and lustre) and wetting agents (to aid surface wetting and thus prevent gas bubbles and void formation). This paper investigates the effects of some of these variables on internal stress and stretch as a function of applied current density.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions
    corecore