292 research outputs found
Conservative evaluation of the uncertainty in the LAGEOS-LAGEOS II Lense-Thirring test
We deal with the test of the general relativistic gravitomagnetic
Lense-Thirring effect currently ongoing in the Earth's gravitational field with
the combined nodes \Omega of the laser-ranged geodetic satellites LAGEOS and
LAGEOS II.
One of the most important source of systematic uncertainty on the orbits of
the LAGEOS satellites, with respect to the Lense-Thirring signature, is the
bias due to the even zonal harmonic coefficients J_L of the multipolar
expansion of the Earth's geopotential which account for the departures from
sphericity of the terrestrial gravitational potential induced by the
centrifugal effects of its diurnal rotation. The issue addressed here is: are
the so far published evaluations of such a systematic error reliable and
realistic? The answer is negative. Indeed, if the difference \Delta J_L among
the even zonals estimated in different global solutions (EIGEN-GRACE02S,
EIGEN-CG03C, GGM02S, GGM03S, ITG-Grace02, ITG-Grace03s, JEM01-RL03B, EGM2008,
AIUB-GRACE01S) is assumed for the uncertainties \delta J_L instead of using
their more or less calibrated covariance sigmas \sigma_{J_L}, it turns out that
the systematic error \delta\mu in the Lense-Thirring measurement is about 3 to
4 times larger than in the evaluations so far published based on the use of the
sigmas of one model at a time separately, amounting up to 37% for the pair
EIGEN-GRACE02S/ITG-Grace03s. The comparison among the other recent GRACE-based
models yields bias as large as about 25-30%. The major discrepancies still
occur for J_4, J_6 and J_8, which are just the zonals the combined
LAGEOS/LAGOES II nodes are most sensitive to.Comment: LaTex, 12 pages, 12 tables, no figures, 64 references. To appear in
Central European Journal of Physics (CEJP
Experimental Vacuum Squeezing in Rubidium Vapor via Self-Rotation
We report the generation of optical squeezed vacuum states by means of
polarization self-rotation in rubidium vapor following a proposal by Matsko et
al. [Phys. Rev. A 66, 043815 (2002)]. The experimental setup, involving in
essence just a diode laser and a heated rubidium gas cell, is simple and easily
scalable. A squeezing of 0.85+-0.05 dB was achieved
Unstaged cancer in the United States: a population-based study
<p>Abstract</p> <p>Background</p> <p>The current study examines unstaged disease for 18 cancer sites in the United States according to the influence of age, sex, race, marital status, incidence, and lethality.</p> <p>Methods</p> <p>Analyses are based on 1,040,381 male and 1,011,355 female incident cancer cases diagnosed during 2000 through 2007. Data were collected by population-based cancer registries in the National Cancer Institute's Surveillance, Epidemiology, and End Results Program.</p> <p>Results</p> <p>The level of unstaged disease was greater in more lethal cancers (e.g., liver, esophagus, and pancreas) compared with less deadly cancers (i.e., colon, urinary bladder, and female breast). Unstaged disease increased with age and is greater among non-married patients. Blacks compared with whites experienced significantly higher levels of unstaged cancers of the stomach, rectum, colon, skin (melanoma), urinary bladder, thyroid, breast, corpus, cervix, and ovaries, but lower levels of unstaged liver, lung and bronchial cancers. Males compared with females experienced significantly lower levels of unstaged cancers of the liver, pancreas, esophagus, and stomach, but significantly higher levels of unstaged lung and bronchial cancer and thyroid cancer. The percent of unstaged cancer significantly decreased over the study period for 15 of the 18 cancer sites.</p> <p>Conclusion</p> <p>Tumor staging directly affects treatment options and survival, so it is recommended that further research focus on why a decrease in unstaged disease did not occur for all of the cancer sites considered from 2000 to 2007, and why there are differential levels of staging between whites and blacks, males and females for several of the cancer sites.</p
Will the recently approved LARES mission be able to measure the Lense-Thirring effect at 1%?
After the approval by the Italian Space Agency of the LARES satellite, which
should be launched at the end of 2009 with a VEGA rocket and whose claimed goal
is a about 1% measurement of the general relativistic gravitomagnetic
Lense-Thirring effect in the gravitational field of the spinning Earth, it is
of the utmost importance to reliably assess the total realistic accuracy that
can be reached by such a mission. The observable is a linear combination of the
nodes of the existing LAGEOS and LAGEOS II satellites and of LARES able to
cancel out the impact of the first two even zonal harmonic coefficients of the
multipolar expansion of the classical part of the terrestrial gravitational
potential representing a major source of systematic error. While LAGEOS and
LAGEOS II fly at altitudes of about 6000 km, LARES will be placed at an
altitude of 1450 km. Thus, it will be sensitive to much more even zonals than
LAGEOS and LAGEOS II. Their corrupting impact \delta\mu has been evaluated by
using the standard Kaula's approach up to degree L=70 along with the sigmas of
the covariance matrices of eight different global gravity solutions
(EIGEN-GRACE02S, EIGEN-CG03C, GGM02S, GGM03S, JEM01-RL03B, ITG-Grace02s,
ITG-Grace03, EGM2008) obtained by five institutions (GFZ, CSR, JPL, IGG, NGA)
with different techniques from long data sets of the dedicated GRACE mission.
It turns out \delta\mu about 100-1000% of the Lense-Thirring effect. An
improvement of 2-3 orders of magnitude in the determination of the high degree
even zonals would be required to constrain the bias to about 1-10%.Comment: Latex, 15 pages, 1 table, no figures. Final version matching the
published one in General Relativity and Gravitation (GRG
How to reach a few percent level in determining the Lense-Thirring effect?
In this paper we discuss and compare a node-only LAGEOS-LAGEOS II combination
and a node-only LAGEOS-LAGEOS II-Ajisai-Jason1 combination for the
determination of the Lense-Thirring effect. The new combined EIGEN-CG01C Earth
gravity model has been adopted. The second combination cancels the first three
even zonal harmonics along with their secular variations but introduces the
non-gravitational perturbations of Jason1. The first combination is less
sensitive to the non-conservative forces but is sensitive to the secular
variations of the uncancelled even zonal harmonics of low degree J4 and J6
whose impact grows linearly in time.Comment: Latex2e, 22 pag. 1 table, 2 figures, 45 references. Changes in the
Abstract, Introduction and Conclusions. Discussion on the non-gravitational
perturbations on Ajisai and on the impact of the secular rates of the even
zonal harmonics added. EIGEN-CG01C CHAMP+GRACE+terrestrial
gravimetry/altimetry Earth gravity model used. Reference adde
SPECT: A spin-flip loaded magnetic ultracold neutron trap for a determination of the neutron lifetime
The confinement of ultracold neutrons (UCNs) in a three dimensional magnetic
field gradient trap allows for a measurement of the free neutron lifetime with
superior control over spurious loss channels and can provide a large kinetic
energy acceptance to enhance statistical sensitivity. In this paper, we present
the first successful implementation of a pulsed spin-flip based loading scheme
for a three-dimensional magnetic UCN trap. The measurements with the
SPECT experiment were performed at the pulsed UCN source of the research
reactor TRIGA Mainz. We report on detailed investigations of major systematic
effects influencing the neutron storage time, statistically limited by the size
of the recorded data set. The extracted neutron storage time constant of is compatible with, but not to be interpreted as, a
measurement of the free neutron lifetime.Comment: 15 pages, 19 figure
Phenomenology of the Lense-Thirring effect in the Solar System
Recent years have seen increasing efforts to directly measure some aspects of
the general relativistic gravitomagnetic interaction in several astronomical
scenarios in the solar system. After briefly overviewing the concept of
gravitomagnetism from a theoretical point of view, we review the performed or
proposed attempts to detect the Lense-Thirring effect affecting the orbital
motions of natural and artificial bodies in the gravitational fields of the
Sun, Earth, Mars and Jupiter. In particular, we will focus on the evaluation of
the impact of several sources of systematic uncertainties of dynamical origin
to realistically elucidate the present and future perspectives in directly
measuring such an elusive relativistic effect.Comment: LaTex, 51 pages, 14 figures, 22 tables. Invited review, to appear in
Astrophysics and Space Science (ApSS). Some uncited references in the text
now correctly quoted. One reference added. A footnote adde
An Assessment of the Systematic Uncertainty in Present and Future Tests of the Lense-Thirring Effect with Satellite Laser Ranging
We deal with the attempts to measure the Lense-Thirring effect with the
Satellite Laser Ranging (SLR) technique applied to the existing LAGEOS and
LAGEOS II terrestrial satellites and to the recently approved LARES
spacecraft.The first issue addressed here is: are the so far published
evaluations of the systematic uncertainty induced by the bad knowledge of the
even zonal harmonic coefficients J_L of the multipolar expansion of the Earth's
geopotential reliable and realistic?
Our answer is negative. Indeed, if the differences Delta J_L among the even
zonals estimated in different Earth's gravity field global solutions from the
dedicated GRACE mission are assumed for the uncertainties delta J_L instead of
using their covariance sigmas sigma_JL, it turns out that the systematic
uncertainty \delta\mu in the Lense-Thirring test with the nodes Omega of LAGEOS
and LAGEOS II may be up to 3 to 4 times larger than in the evaluations so far
published () based on the use of the sigmas of one model at a time
separately. The second issue consists of the possibility of using a different
approach in extracting the relativistic signature of interest from the
LAGEOS-type data. The third issue is the possibility of reaching a realistic
total accuracy of 1% with LAGEOS, LAGEOS II and LARES, which should be launched
in November 2009 with a VEGA rocket. While LAGEOS and LAGEOS II fly at
altitudes of about 6000 km, LARES will be likely placed at an altitude of 1450
km. Thus, it will be sensitive to much more even zonals than LAGEOS and LAGEOS
II. Their corrupting impact has been evaluated with the standard Kaula's
approach up to degree L=60 by using Delta J_L and sigma_JL; it turns out that
it may be as large as some tens percent.Comment: LaTex, 19 pages, 1 figure, 12 tables. Invited and refereed
contribution to The ISSI Workshop, 6-10 October 2008, on The Nature of
Gravity Confronting Theory and Experiment in Space To appear in Space Science
Review
Neutrophils in cancer: neutral no more
Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets
- …