22 research outputs found
Vertex-Coloring with Star-Defects
Defective coloring is a variant of traditional vertex-coloring, according to
which adjacent vertices are allowed to have the same color, as long as the
monochromatic components induced by the corresponding edges have a certain
structure. Due to its important applications, as for example in the
bipartisation of graphs, this type of coloring has been extensively studied,
mainly with respect to the size, degree, and acyclicity of the monochromatic
components.
In this paper we focus on defective colorings in which the monochromatic
components are acyclic and have small diameter, namely, they form stars. For
outerplanar graphs, we give a linear-time algorithm to decide if such a
defective coloring exists with two colors and, in the positive case, to
construct one. Also, we prove that an outerpath (i.e., an outerplanar graph
whose weak-dual is a path) always admits such a two-coloring. Finally, we
present NP-completeness results for non-planar and planar graphs of bounded
degree for the cases of two and three colors
A Fixed-Parameter Algorithm for the Max-Cut Problem on Embedded 1-Planar Graphs
We propose a fixed-parameter tractable algorithm for the \textsc{Max-Cut}
problem on embedded 1-planar graphs parameterized by the crossing number of
the given embedding. A graph is called 1-planar if it can be drawn in the plane
with at most one crossing per edge. Our algorithm recursively reduces a
1-planar graph to at most planar graphs, using edge removal and node
contraction. The \textsc{Max-Cut} problem is then solved on the planar graphs
using established polynomial-time algorithms. We show that a maximum cut in the
given 1-planar graph can be derived from the solutions for the planar graphs.
Our algorithm computes a maximum cut in an embedded 1-planar graph with
nodes and edge crossings in time .Comment: conference version from IWOCA 201
Type 2 diabetes gene TCF7L2 polymorphism is not associated with fetal and postnatal growth in two birth cohort studies
Background: An inverse association between birth weight and the risk of developing type 2 diabetes (T2D) in adulthood has been reported. This association may be explained by common g