8 research outputs found
Magnetism: the Driving Force of Order in CoPt. A First-Principles Study
CoPt or FePt equiatomic alloys order according to the tetragonal L10
structure which favors their strong magnetic anisotropy. Conversely magnetism
can influence chemical ordering. We present here {\it ab initio} calculations
of the stability of the L10 and L12 structures of Co-Pt alloys in their
paramagnetic and ferromagnetic states. They show that magnetism strongly
reinforces the ordering tendencies in this system. A simple tight-binding
analysis allows us to account for this behavior in terms of some pertinent
parameters
A tight-binding potential for atomistic simulations of carbon interacting with transition metals: Application to the Ni-C system
We present a tight-binding potential for transition metals, carbon, and
transition metal carbides, which has been optimized through a systematic
fitting procedure. A minimal basis, including the s, p electrons of carbon and
the d electrons of the transition metal, is used to obtain a transferable
tight-binding model of the carbon-carbon, metal-metal and metal-carbon
interactions applicable to binary systems. The Ni-C system is more specifically
discussed. The successful validation of the potential for different atomic
configurations indicates a good transferability of the model and makes it a
good choice for atomistic simulations sampling a large configuration space.
This approach appears to be very efficient to describe interactions in systems
containing carbon and transition metal elements