3 research outputs found

    Sample size, power and effect size revisited: simplified and practical approaches in pre-clinical, clinical and laboratory studies

    Get PDF
    Calculating the sample size in scientific studies is one of the critical issues as regards the scientific contribution of the study. The sample size critically affects the hypothesis and the study design, and there is no straightforward way of calculating the effective sample size for reaching an accurate conclusion. Use of a statistically incorrect sample size may lead to inadequate results in both clinical and laboratory studies as well as resulting in time loss, cost, and ethical problems. This review holds two main aims. The first aim is to explain the importance of sample size and its relationship to effect size (ES) and statistical significance. The second aim is to assist researchers planning to perform sample size estimations by suggesting and elucidating available alternative software, guidelines and references that will serve different scientific purposes

    Association of serum ADMA, SDMA and L-NMMA concentrations with disease progression in COVID-19 patients

    Get PDF
    IntroductionThis study determines and compares the concentrations of arginine and methylated arginine products ((asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), n-monomethyl-1-arginine (L-NMMA) and homoarginine (HA)) for assessment of their association with disease severity in serum samples of COVID-19 patients. Materials and methodsSerum arginine and methylated arginine products of 57 mild-moderate and 29 severe (N = 86) COVID-19 patients and 21 controls were determined by tandem mass spectrometry. Moreover, the concentrations of some of the routine clinical laboratory parameters -neutrophil lymphocyte ratio (NLR), C-reactive protein, ferritin, D-dimer, and fibrinogen measured during COVID-19 follow-up were also taken into consideration and compared with the concentrations of arginine and methylated arginine products. ResultsSerum ADMA, SDMA and L-NMMA were found to be significantly higher in severe COVID-19 patients, than in both mild-moderate patients and the control group (P < 0.001 for each). In addition, multiple logistic regression analysis indicated L-NMMA (cut-off =120 nmol/L OR = 34, 95% confidence interval (CI) = 3.5-302.0, P= 0.002), CRP (cut-off = 32 mg/L, OR = 37, 95% CI = 4.8-287.0, P < 0.001), and NLR (cut-off = 7, OR = 22, 95% CI = 1.4-335.0, P = 0.020) as independent risk factors for identification of severe patients. ConclusionsThe concentration of methylated arginine metabolites are significantly altered in COVID-19 disease. The results of this study indicate a significant correlation between the severity of COVID-19 disease and concentrations of CRP, NLR and L-NMMA

    Sample size, power and effect size revisited: simplified and practical approaches in pre-clinical, clinical and laboratory studies.

    Get PDF
    Calculating the sample size in scientific studies is one of the critical issues as regards the scientific contribution of the study. The sample size critically affects the hypothesis and the study design, and there is no straightforward way of calculating the effective sample size for reaching an accurate conclusion. Use of a statistically incorrect sample size may lead to inadequate results in both clinical and laboratory studies as well as resulting in time loss, cost, and ethical problems. This review holds two main aims. The first aim is to explain the importance of sample size and its relationship to effect size (ES) and statistical significance. The second aim is to assist researchers planning to perform sample size estimations by suggesting and elucidating available alternative software, guidelines and references that will serve different scientific purposes
    corecore