71 research outputs found
The Distribution of the Domination Number of a Family of Random Interval Catch Digraphs
We study a new kind of proximity graphs called proportional-edge proximity
catch digraphs (PCDs)in a randomized setting. PCDs are a special kind of random
catch digraphs that have been developed recently and have applications in
statistical pattern classification and spatial point pattern analysis. PCDs are
also a special type of intersection digraphs; and for one-dimensional data, the
proportional-edge PCD family is also a family of random interval catch
digraphs. We present the exact (and asymptotic) distribution of the domination
number of this PCD family for uniform (and non-uniform) data in one dimension.
We also provide several extensions of this random catch digraph by relaxing the
expansion and centrality parameters, thereby determine the parameters for which
the asymptotic distribution is non-degenerate. We observe sudden jumps (from
degeneracy to non-degeneracy or from a non-degenerate distribution to another)
in the asymptotic distribution of the domination number at certain parameter
values.Comment: 29 pages, 3 figure
A contingency table approach based on nearest neighbour relations for testing self and mixed correspondence
Nearest neighbour methods are employed for drawing inferences about spatial patterns of points from two or more classes. We introduce a new pattern called correspondence which is motivated by (spatial) niche/habitat specificity and segregation, and define an associated contingency table called a correspondence contingency table, and examine the relation of correspondence with the motivating patterns (namely, segregation and niche specificity). We propose tests based on the correspondence contingency table for testing self and mixed correspondence and determine the appropriate null hypotheses and the underlying conditions appropriate for these tests. We compare finite sample performance of the tests in terms of empirical size and power by extensive Monte Carlo simulations and illustrate the methods on two artificial data sets and one real-life ecological data set.Peer Reviewe
Segregation Indices for Disease Clustering
Spatial clustering has important implications in various fields. In
particular, disease clustering is of major public concern in epidemiology. In
this article, we propose the use of two distance-based segregation indices to
test the significance of disease clustering among subjects whose locations are
from a homogeneous or an inhomogeneous population. We derive their asymptotic
distributions and compare them with other distance-based disease clustering
tests in terms of empirical size and power by extensive Monte Carlo
simulations. The null pattern we consider is the random labeling (RL) of cases
and controls to the given locations. Along this line, we investigate the
sensitivity of the size of these tests to the underlying background pattern
(e.g., clustered or homogenous) on which the RL is applied, the level of
clustering and number of clusters, or differences in relative abundances of the
classes. We demonstrate that differences in relative abundance has the highest
impact on the empirical sizes of the tests. We also propose various non-RL
patterns as alternatives to the RL pattern and assess the empirical power
performance of the tests under these alternatives. We illustrate the methods on
two real-life examples from epidemiology.Comment: 31 pages, 13 figures, 3 table
Extension of One-Dimensional Proximity Regions to Higher Dimensions
Proximity maps and regions are defined based on the relative allocation of
points from two or more classes in an area of interest and are used to
construct random graphs called proximity catch digraphs (PCDs) which have
applications in various fields. The simplest of such maps is the spherical
proximity map which maps a point from the class of interest to a disk centered
at the same point with radius being the distance to the closest point from the
other class in the region. The spherical proximity map gave rise to class cover
catch digraph (CCCD) which was applied to pattern classification. Furthermore
for uniform data on the real line, the exact and asymptotic distribution of the
domination number of CCCDs were analytically available. In this article, we
determine some appealing properties of the spherical proximity map in compact
intervals on the real line and use these properties as a guideline for defining
new proximity maps in higher dimensions. Delaunay triangulation is used to
partition the region of interest in higher dimensions. Furthermore, we
introduce the auxiliary tools used for the construction of the new proximity
maps, as well as some related concepts that will be used in the investigation
and comparison of them and the resulting graphs. We characterize the geometry
invariance of PCDs for uniform data. We also provide some newly defined
proximity maps in higher dimensions as illustrative examples
- …