6,466 research outputs found

    The Distribution of the Domination Number of a Family of Random Interval Catch Digraphs

    Full text link
    We study a new kind of proximity graphs called proportional-edge proximity catch digraphs (PCDs)in a randomized setting. PCDs are a special kind of random catch digraphs that have been developed recently and have applications in statistical pattern classification and spatial point pattern analysis. PCDs are also a special type of intersection digraphs; and for one-dimensional data, the proportional-edge PCD family is also a family of random interval catch digraphs. We present the exact (and asymptotic) distribution of the domination number of this PCD family for uniform (and non-uniform) data in one dimension. We also provide several extensions of this random catch digraph by relaxing the expansion and centrality parameters, thereby determine the parameters for which the asymptotic distribution is non-degenerate. We observe sudden jumps (from degeneracy to non-degeneracy or from a non-degenerate distribution to another) in the asymptotic distribution of the domination number at certain parameter values.Comment: 29 pages, 3 figure

    A contingency table approach based on nearest neighbour relations for testing self and mixed correspondence

    Get PDF
    Nearest neighbour methods are employed for drawing inferences about spatial patterns of points from two or more classes. We introduce a new pattern called correspondence which is motivated by (spatial) niche/habitat specificity and segregation, and define an associated contingency table called a correspondence contingency table, and examine the relation of correspondence with the motivating patterns (namely, segregation and niche specificity). We propose tests based on the correspondence contingency table for testing self and mixed correspondence and determine the appropriate null hypotheses and the underlying conditions appropriate for these tests. We compare finite sample performance of the tests in terms of empirical size and power by extensive Monte Carlo simulations and illustrate the methods on two artificial data sets and one real-life ecological data set.Peer Reviewe
    corecore