5 research outputs found

    Important Teacher Qualities for Integrating Blended Learning in Higher Education

    Get PDF
    Blended learning is widely accepted in Peruvian higher education for a number of reasons, including the fact that it allows students more leeway to accommodate their own unique schedule and learning needs. The present qualitative research investigates the qualities of effective teachers that are crucial to the successful implementation of blended learning from the vantage point of experts, who can gain valuable insight into the causes of organizational problems and the best strategies for resolving them. There are seven positive characteristics of blended learning teachers, such as the ability to recognize the need for pedagogical change or the confidence to incorporate technology into learning processes, and four negative characteristics, such as a lack of familiarity with blended learning or anxiety about students use of technology. Blended learning in higher education is investigated here to identify the factors that influence it

    Metalloporphyrin reduced C70 fullerenes as adsorbents and detectors of ethenone; A DFT, NBO, and TD-DFT study

    No full text
    In the present work, the structure and electronic properties of Ti-, Cr-, Fe-, Ni-, Zn-, and Cu-inserted in porphyrin-reduced C70 fullerenes (TM-PIC70Fs) and their interactions with the ethenone were studied using DFT, NBO, and TD-DFT at CAM-B3LYP/6-31G(d) level of theory. 2.89–3.83 and 4.02–4.56 eV were obtained for the HOMO-LUMO gap energies and work functions of TM-PIC70Fs, respectively, compared with 3.76 and 4.54 eV for PIC70F. Among considered TM-PIC70Fs, the adsorption of the ethenone on Ti-PIC70F appreciably changed the HOMO-LUMO energy gap and work function. Consequently, Ti-PIC70F may be used as the ethenone's electronic conductivity and work function types sensor. According to calculated UV–visible spectra, the ethenone adsorption may change the color of Fe- and Ti-PIC70Fs. Therefore, they can be used as color-changing sensors of ethenone. In addition, Ti-, Cr-, Fe-, and Zn-PIC70Fs can be employed as suitable adsorbents of ethenone. Among proper sensors and adsorbents of ethenone, Cr-, Fe-, and Zn-PIC70Fs may be recovered and reused

    DFT assessments of BN, AlN, and GaN decorated carbon cage scaffolds for sensing the thiamazole drug

    No full text
    Sensing drug substances by nanostructures are very important in accordance with the management of targeted drug delivery processes and drug substances detections. Boron nitride (BN), aluminum nitride (AlN), and gallium nitride (GaN) decorated carbon cage (BN-C, AlN-C, and GaN-C) scaffolds were assessed towards sensing the thiamazole (TMZ) drug through the wB97XD/6–31 + G* level of density functional theory (DFT) computations. The singular models were optimized and their combinations to each other were stabilized to obtain the interacting TMZ@Scaffold bimolecular complexes and their corresponding features. The results indicated the existence of non-covalent physical interactions between the substances and their electronic features indicated possibility of sensing function for the investigated scaffolds. Based on the variations of values of adsorption energy and energy gap, the features of recovery time and conductance rate were achieved to predict a sensing function for the models; TMZ@GaN-C was found at the highest suitability in comparison with TMZ@AlN-C and TMZ@BN-C models. The obtained thermochemistry results indicated a spontaneous process for the formation of TMZ@Scaffold complexes. Based on all the obtained results, an order of TMZ@GaN-C > TMZ@AlN-C > TMZ@BN-C was found for describing stability, formation, and electronic features suitability by assigning specific features for each of the singular BN-C, AlN-C, and GaN-C scaffolds towards the TMZ drug. As a consequence, two purposes of detections and adsorptions were approached for the investigated scaffolds to develop sensing functions of BN-C, AlN-C, and GaN-C scaffolds for the TMZ drug

    Adsorption of thiotepa anticancer by the assistance of aluminum nitride nanocage scaffolds: A computational perspective on drug delivery applications

    No full text
    This work was carried out by the importance of providing insights into the nano-based drug delivery of anticancers. To this aim, a representative model of aluminum nitride (AN) nanocage scaffold and two of its boron and gallium doped forms (BAN and GAN) were investigated towards the adsorption of thiotepa (Tep) anticancer. Density functional theory (DFT) calculations were performed to evaluate the stabilized structures and their corresponding electronic features. The results indicated the contribution of N-head and S-head of Tep to interactions with each scaffold resulting six complexes; NTep@AN and STep@AN, NTep@BAN and STep@BAN, NTep@GAN and STep@GAN. In each complex model, the characteristic features were obtained based on the interactions details and frontier molecular orbitals related features. In this regard, the investigated scaffolds were found suitable for adsorbing the Tep substance with different strengths and frontier molecular orbitals levels yielding the possibility of assigning specified recovery time and conductance. As a consequence, the models of investigated scaffolds were found suitable to work as possible carriers of Tep anticancer for approaching the nano-based drug delivery purposes

    Important Teacher Qualities for Integrating Blended Learning in Higher Education

    No full text
    Blended learning is widely accepted in Peruvian higher education for a number of reasons, including the fact that it allows students more leeway to accommodate their own unique schedule and learning needs. The present qualitative research investigates the qualities of effective teachers that are crucial to the successful implementation of blended learning from the vantage point of experts, who can gain valuable insight into the causes of organizational problems and the best strategies for resolving them. There are seven positive characteristics of blended learning teachers, such as the ability to recognize the need for pedagogical change or the confidence to incorporate technology into learning processes, and four negative characteristics, such as a lack of familiarity with blended learning or anxiety about students use of technology. Blended learning in higher education is investigated here to identify the factors that influence it
    corecore