117 research outputs found
Cystatin B Involvement in Synapse Physiology of Rodent Brains and Human Cerebral Organoids
Cystatin B (CSTB) is a ubiquitous protein belonging to a superfamily of protease inhibitors. CSTB may play a critical role in brain physiology because its mutations cause progressive myoclonic epilepsy-1A (EPM1A), the most common form of progressive myoclonic epilepsy. However, the molecular mechanisms underlying the role of CSTB in the central nervous system (CNS) are largely unknown. To investigate the possible involvement of CSTB in the synaptic plasticity, we analyzed its expression in synaptosomes as a model system in studying the physiology of the synaptic regions of the CNS. We found that CSTB is not only present in the synaptosomes isolated from rat and mouse brain cortex, but also secreted into the medium in a depolarization-controlled manner. In addition, using biorthogonal noncanonical amino acid tagging (BONCAT) procedure, we demonstrated, for the first time, that CSTB is locally synthesized in the synaptosomes. The synaptic localization of CSTB was confirmed in a human 3D model of cortical development, namely cerebral organoids. Altogether, these results suggest that CSTB may play a role in the brain plasticity and open a new perspective in studying the involvement of CSTB deregulation in neurodegenerative and neuropsychiatric diseases
Genome-wide analysis of transcriptional dependence and probable target sites for Abf1 and Rap1 in Saccharomyces cerevisiae
Abf1 and Rap1 are general regulatory factors (GRFs) that contribute to transcriptional activation of a large number of genes, as well as to replication, silencing and telomere structure in yeast. In spite of their widespread roles in transcription, the scope of their functional targets genome-wide has not been previously determined. Here, we use microarrays to examine the contribution of these essential GRFs to transcription genome-wide, by using ts mutants that dissociate from their binding sites at 37°C. We then combine this data with published ChIP-chip studies and motif analysis to identify probable direct targets for Abf1 and Rap1. We also identify a substantial number of genes likely to bind Rap1 or Abf1, but not affected by loss of GRF binding. Interestingly, the results strongly suggest that Rap1 can contribute to gene activation from farther upstream than can Abf1. Also, consistent with previous work, more genes that bind Abf1 are unaffected by loss of binding than those that bind Rap1. Finally, we show for several such genes that the Abf1 C-terminal region, which contains the putative activation domain, is not needed to confer this peculiar âmemory effectâ that allows continued transcription after loss of Abf1 binding
Nuclear role for human Argonaute-1 as an estrogen-dependent transcription coactivator
In mammals, argonaute (AGO) proteins have been characterized for their roles in small RNA mediated posttranscriptional and also in transcriptional gene silencing. Here, we report a different role for AGO1 in estradiol-triggered transcriptional activation in human cells. We show that in MCF-7 mammary gland cells, AGO1 associates with transcriptional enhancers of estrogen receptor α (ERα) and that this association is up-regulated by treating the cells with estrogen (E2), displaying a positive correlation with the activation of these enhancers.Moreover, we show that AGO1 interacts with ERα and that this interaction is also increased by E2 treatment, but occurs in the absence of RNA. We show that AGO1 acts positively as a coactivator in estradiol-triggered transcription regulation by promoting ERα binding to its enhancers. Consistently, AGO1 depletion decreases long-range contacts between ERα enhancers and their target promoters. Our results point to a role of AGO1 in transcriptional regulation in human cells that is independent from small RNA binding.Fil: GĂłmez Acuña, Luciana InĂ©s. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de FisiologĂa, BiologĂa Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de FisiologĂa, BiologĂa Molecular y Neurociencias; ArgentinaFil: Nazer, Ezequiel. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de FisiologĂa, BiologĂa Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de FisiologĂa, BiologĂa Molecular y Neurociencias; ArgentinaFil: RodrĂguez SeguĂ, Santiago AndrĂ©s. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de FisiologĂa, BiologĂa Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de FisiologĂa, BiologĂa Molecular y Neurociencias; ArgentinaFil: Pozzi, MarĂa Berta. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de FisiologĂa, BiologĂa Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de FisiologĂa, BiologĂa Molecular y Neurociencias; ArgentinaFil: Buggiano, Valeria Carmen. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de FisiologĂa, BiologĂa Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de FisiologĂa, BiologĂa Molecular y Neurociencias; ArgentinaFil: Marasco, Luciano Edmundo. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de FisiologĂa, BiologĂa Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de FisiologĂa, BiologĂa Molecular y Neurociencias; ArgentinaFil: Agirre, Eneritz. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: He, Cody. University of Chicago; Estados UnidosFil: AllĂł, Mariano. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de FisiologĂa, BiologĂa Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de FisiologĂa, BiologĂa Molecular y Neurociencias; ArgentinaFil: Kornblihtt, Alberto Rodolfo. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de FisiologĂa, BiologĂa Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de FisiologĂa, BiologĂa Molecular y Neurociencias; Argentin
Drosha regulates gene expression independently of RNA cleavage function
Drosha is the main RNase III-like enzyme involved in the process of microRNA (miRNA) biogenesis in the nucleus. Using whole-genome ChIP-on-chip analysis, we demonstrate that, in addition to miRNA sequences, Drosha specifically binds promoter-proximal regions of many human genes in a transcription-dependent manner. This binding is not associated with miRNA production or RNA cleavage. Drosha knockdown in HeLa cells downregulated nascent gene transcription, resulting in a reduction of polyadenylated mRNA produced from these gene regions. Furthermore, we show that this function of Drosha is dependent on its N-terminal protein-interaction domain, which associates with the RNA-binding protein CBP80 and RNA Polymerase II. Consequently, we uncover a previously unsuspected RNA cleavage-independent function of Drosha in the regulation of human gene expression
PD-1 instructs a tumor-suppressive metabolic program that restricts glycolysis and restrains AP-1 activity in T cell lymphoma.
peer reviewedThe PDCD1-encoded immune checkpoint receptor PD-1 is a key tumor suppressor in T cells that is recurrently inactivated in T cell non-Hodgkin lymphomas (T-NHLs). The highest frequencies of PDCD1 deletions are detected in advanced disease, predicting inferior prognosis. However, the tumor-suppressive mechanisms of PD-1 signaling remain unknown. Here, using tractable mouse models for T-NHL and primary patient samples, we demonstrate that PD-1 signaling suppresses T cell malignancy by restricting glycolytic energy and acetyl coenzyme A (CoA) production. In addition, PD-1 inactivation enforces ATP citrate lyase (ACLY) activity, which generates extramitochondrial acetyl-CoA for histone acetylation to enable hyperactivity of activating protein 1 (AP-1) transcription factors. Conversely, pharmacological ACLY inhibition impedes aberrant AP-1 signaling in PD-1-deficient T-NHLs and is toxic to these cancers. Our data uncover genotype-specific vulnerabilities in PDCD1-mutated T-NHL and identify PD-1 as regulator of AP-1 activity
Promoter G-quadruplexes and transcription factors cooperate to shape the cell type-specific transcriptome
Cell identity is maintained by activation of cell-specific gene programs, regulated by epigenetic marks, transcription factors and chromatin organization. DNA G-quadruplex (G4)-folded regions in cells were reported to be associated with either increased or decreased transcriptional activity. By G4-ChIP-seq/RNA-seq analysis on liposarcoma cells we confirmed that G4s in promoters are invariably associated with high transcription levels in open chromatin. Comparing G4 presence, location and transcript levels in liposarcoma cells to available data on keratinocytes, we showed that the same promoter sequences of the same genes in the two cell lines had different G4-folding state: high transcript levels consistently associated with G4-folding. Transcription factors AP-1 and SP1, whose binding sites were the most significantly represented in G4-folded sequences, coimmunoprecipitated with their G4-folded promoters. Thus, G4s and their associated transcription factors cooperate to determine cell-specific transcriptional programs, making G4s to strongly emerge as new epigenetic regulators of the transcription machinery
- âŠ