18 research outputs found

    Interactions of Epstein-Barr virus origins of replication with nuclear matrix in the latent and in the lytic phases of viral infection

    Get PDF
    Eukaryotic DNA is organized into domains or loops generated by the attachment of chromatin fibers to the nuclear matrix via specific regions called scaffold or matrix attachment regions. The role of these regions in DNA replication is currently under investigation since they have been found in close association with origins of replication. Also, viral DNA sequences, containing the origins of replication, have been found attached to the nuclear matrix. To investigate the functional role of this binding we have studied, in Raji cells, the interaction between Epstein-Barr virus (EBV) origins of replication and the nuclear matrix in relation to the viral cycle of infection. We report here that both the latent (ori P) and the lytic (ori Lyt) EBV origins of replication are attached to the nuclear matrix, the first during the latent cycle of infection and the second after induction of the lytic cycle. These findings suggest that the binding of the origins of replication with the nuclear matrix modulates viral replication and expression in the two different phases of infection

    Differentation-specific nuclear matrix proteins cross-linked to DNA by cis-diamminedichloroplatinum.

    Full text link
    DNA-protein cross-linkages were performed in intact undifferentiated and differentiated-HL60 cells by the action of cis-diammine dichloroplatinum. Total nuclear matrix proteins and DNA cross-linked nuclear matrix proteins were resolved by two-dimensional gel electrophoresis. The comparison of the electrophoretic patterns allowed the identification of a set of differentiation-induced nuclear matrix proteins cross-linked to DNA. One of these proteins binds cloned histone SAR sequences. Our results outline an experimental strategy for isolating and characterizing nuclear matrix components that may play a fundamental role in the overall control and coordination of gene expression during differentiation

    Tyrosine 769 of the keratinocyte growth factor receptor is required for receptor signaling but not endocytosis

    Full text link
    Keratinocyte growth factor receptor (KGFR) is a receptor tyrosine kinase expressed on epithelial cells which belongs to the family of fibroblast growth factor receptors (FGFRs). Following ligand binding. KGFR is rapidly autophosphorylated on specific tyrosine residues in the intracellular domain, recruits substrate proteins, and is rapidly internalized by clathrin-mediated endocytosis The role of different autophosphorylation sites in FGFRs, and in particular the role of the tyrosine 766 in FGFR1, first identified as PLCgamma binding site, has been extensively studied. We analyzed here the possible role of the tyrosine 769 in KGFR, corresponding to tyrosine 766 in FGFR1, in the regulation of KGFR signal transduction and MAPK activation as well as in the control of the endocytic process of KGFR. A mutant KGFR in which tyrosine 769 was substituted by phenylalanine was generated and transfected in NIH3T3 and HeLa cells. Our results indicate that tyrosine 769 is required for the binding to KGFR and tyrosine phosphor-phosphorylation of PLCgamma as well as for the full activation of MAPKs and for cell proliferation through the regulation of FRS2 tyrosine phosphorylation, suggesting that this residue represents a key regulator of KGFR signal transduction. Our data also show that tyrosine 769 is not involved in the regulation of the endocytic process of KGFR. (C) 2004 Elsevier Inc. All rights reserved

    The Rho Guanine Nucleotide Exchange Factors Intersectin 1L and b-Pix Control Calcium-Regulated Exocytosis in Neuroendocrine PC12 Cells

    Full text link
    International audienceGTPases of the Rho family are molecular switches that play an important role in a wide range of membrane-trafficking processes including neurotransmis-sion and hormone release. We have previously demonstrated that RhoA and Cdc42 regulate calcium-dependent exocytosis in chromaffin cells by controlling actin dynamics, whereas Rac1 regulates lipid organisation. These findings raised the question of the upstream mechanism activating these GTPases during exocytosis. The guanine nucleotide exchange factors (GEFs) that catalyse the exchange of GDP for GTP are crucial elements regulating Rho signalling. Using an RNA interference approach, we have recently demonstrated that the GEFs Intersectin-1L and b-Pix, play essential roles in neuroen-docrine exocytosis by controlling the activity of Cdc42 and Rac1, respectively. This review summarizes these results and discusses the functional importance of Rho GEFs in the exocytotic machinery in neuroendocrine cells

    The endocytic pathway followed by the keratinocyte growth factor receptor

    Full text link
    Keratinocyte growth factor (KGF/FGF7) acts specifically on epithelial cells and regulates their proliferation and differentiation. It binds to and activates a receptor tyrosine kinase, the KGF receptor (KGFR), which is a splicing variant of the fibroblast growth factor receptor 2. The endocytic pathway followed by KGF and its receptor was analyzed here using immunofluorescence and confocal microscopy. After 10 min of internalization at 37degreesC, both KGF and its receptor were localized in early endosomes, and after 30-60 min of endocytosis ligand and receptor were seen to reach perinuclear late endosomes and not the recycling endosomal compartment. Parallel western blot analysis revealed that KGFRs were tyrosine phosphorylated both at early and late steps of internalization, suggesting that KGF and KGFR remain associated in active complexes through the endocytic pathway. Pulse-chase experiments showed that the internalized KGFRs underwent degradation detectable at 1 h of endocytosis at 37degreesC, indicating that KGFRs are functionally downregulated

    Adaptor protein ARH is recruited to the plasma membrane by LDL binding and modulates endocytosis of the LDL/LDLR complex in hepatocytes.

    Full text link
    ARH is a newly discovered adaptor protein required for the efficient activity of low density lipoprotein receptor (LDLR) in selected tissues. Individuals lacking ARH have severe hypercholesterolemia due to an impaired hepatic clearance of LDL. It has been demonstrated that ARH is required for the efficient internalization of the LDL-LDLR complex and to stabilize the association of the receptor with LDL in Epstein-Barr virus-immortalized B lymphocytes. However, little information is available on the role of ARH in liver cells. Here we provide evidence that ARH is codistributed with LDLR on the basolateral area in confluent HepG2-polarized cells. This distribution is not modified by the overexpression of LDLR. Conversely, the activation of the LDLR-mediated endocytosis, but not the binding of LDL to LDLR, promotes a significant colocalization of ARH with LDL-LDLR complex that peaked at 2 min at 37 degrees C. To further assess the role of ARH in LDL-LDLR complex internalization, we depleted ARH protein using the RNA interference technique. Twenty-four hours after transfection with ARH-specific RNA interference, ARH protein was depleted in HepG2 cells by more than 70%. Quantitative immunofluorescence analysis revealed that the depletion of ARH caused about 80% reduction in LDL internalization. Moreover, our findings indicate that ARH is associated with other proteins of the endocytic machinery. We suggest that ARH is an endocytic sorting adaptor that actively participates in the internalization of the LDL-LDLR complex, possibly enhancing the efficiency of its packaging into the endocytic vesicles

    Adaptor protein ARH is recruited to the plasma membrane by low density lipoprotein (LDL) binding and modulates endocytosis of the LDL/LDL receptor complex in hepatocytes

    Full text link
    ARH is a newly discovered adaptor protein required for the efficient activity of low density lipoprotein receptor ( LDLR) in selected tissues. Individuals lacking ARH have severe hypercholesterolemia due to an impaired hepatic clearance of LDL. It has been demonstrated that ARH is required for the efficient internalization of the LDL-LDLR complex and to stabilize the association of the receptor with LDL in Epstein-Barr virus-immortalized B lymphocytes. However, little information is available on the role of ARH in liver cells. Here we provide evidence that ARH is codistributed with LDLR on the basolateral area in confluent HepG2-polarized cells. This distribution is not modified by the overexpression of LDLR. Conversely, the activation of the LDLR-mediated endocytosis, but not the binding of LDL to LDLR, promotes a significant colocalization of ARH with LDL-LDLR complex that peaked at 2 min at 37 degrees C. To further assess the role of ARH in LDL-LDLR complex internalization, we depleted ARH protein using the RNA interference technique. Twenty-four hours after transfection with ARH-specific RNA interference, ARH protein was depleted in HepG2 cells by more than 70%. Quantitative immunofluorescence analysis revealed that the depletion of ARH caused about 80% reduction in LDL internalization. Moreover, our findings indicate that ARH is associated with other proteins of the endocytic machinery. We suggest that ARH is an endocytic sorting adaptor that actively participates in the internalization of the LDL-LDLR complex, possibly enhancing the efficiency of its packaging into the endocytic vesicles

    Mapping Organelle Motion Reveals a Vesicular Conveyor Belt Spatially Replenishing Secretory Vesicles in Stimulated Chromaffin Cells

    Get PDF
    How neurosecretory cells spatially adjust their secretory vesicle pools to replenish those that have fused and released their hormonal content is currently unknown. Here we designed a novel set of image analyses to map the probability of tracked organelles undergoing a specific type of movement (free, caged or directed). We then applied our analysis to time-lapse z-stack confocal imaging of secretory vesicles from bovine Chromaffin cells to map the global changes in vesicle motion and directionality occurring upon secretagogue stimulation. We report a defined region abutting the cortical actin network that actively transports secretory vesicles and is dissipated by actin and microtubule depolymerizing drugs. The directionality of this "conveyor belt" towards the cell surface is activated by stimulation. Actin and microtubule networks therefore cooperatively probe the microenvironment to transport secretory vesicles to the periphery, providing a mechanism whereby cells globally adjust their vesicle pools in response to secretagogue stimulation

    The 3T3 neutral red uptake phototoxicity test:practical experience and implications for phototoxicity testing - the report of an ECVAM-EFPIA workshop

    Full text link
    This is the report from the “ECVAM-EFPIA workshop on 3T3 NRU Phototoxicity Test: Practical Experience and Implications for Phototoxicity Testing”, jointly organized by ECVAM and EFPIA and held on the 25-27 October 2010 in Somma Lombardo, Italy. The European Centre for the Validation of Alternative Methods (ECVAM) was established in 1991 within the European Commission Joint Research, based on a Communication from the European Commission1. The main objective of ECVAM is to promote the scientific and regulatory acceptance of alternative methods which are of importance to the biosciences and which reduce, refine and replace the use of laboratory animals. The European Federation of Pharmaceuticals Industries and Association (EFPIA) represent the pharmaceutical industry operating in Europe. Through its direct membership of 31 national associations and 40 leading pharmaceutical companies, EFPIA is the voice on the EU scene of 2,200 companies committed to researching, developing and bringing to patients new medicines that improve health and the quality of life around the world. The workshop, co-chaired by Joachim Kreysa (ECVAM) and Phil Wilcox (GSK, EFPIA) involved thirty-five experts from academia, regulatory authorities and industry that were invited to contribute with their experiences in the field. The main objectives of the workshop were: - to present 'in use' experience of the pharmaceutical industry with the 3T3 Neutral Red Uptake Phototoxicity Test (3T3 NRU-PT), - to discuss why it differs from the results in the original validation exercise, - to discuss technical issues and - consider ways to improve the usability of the 3T3 NRU-PT for (non-topical) pharmaceuticals, e.g. by modifying technical aspects of the assay or adjusting the criteria used to classify for a positive response. During the workshop, the assay methodology was reviewed by comparing the OECD Test Guideline with the actual protocol used, data from EFPIA and JPMA ‘surveys’ were presented and possible reasons for the outcomes were discussed. Experts from cosmetics and pharmaceutical industries presented their experience with the 3T3 NRU-PT and evidence was presented for phototoxic clinical symptoms that could be linked to certain relevant molecules. Brainstorming sessions discussed if the 3T3 NRU-PT needed to be improved and whether alternatives to the 3T3 NRU-PT exist. Finally, the view point from EU and US regulators was also presented. In the final session, the conclusions of the meeting were summarised with action points. It was concluded that the 3T3 NRU-PT is a hazard-based assay with a high level of sensitivity. It is relevant and an accepted test that correctly identifies non-phototoxic materials. However, positive results in the 3T3 NRU-PT often do not translate into a clinical phototoxicity risk. Possible ways to improve the practical use of this assay include: (i.) implementation of absorption criteria as a means to reduce the number of materials tested, (ii.) limit the highest concentration tested, and (iii.) consider modifying the criteria used to identify “positives” in the test.JRC.I.5-Systems Toxicolog

    Ubiquitination of Fibroblast Growth Factor Receptor 1 Is Required for Its Intracellular Sorting but Not for Its Endocytosis

    Full text link
    Endocytosis and targeting of growth factor receptors for lysosomal degradation have been associated with ubiquitination of the intracellular part of the receptors. To elucidate the role of receptor ubiquitination in internalization and sorting of fibroblast growth factor receptor (FGFR), we constructed several mutants of FGFR1 in which lysines, potential ubiquitination sites, were substituted for arginines. Substitution of all lysine residues in the intracellular part of FGFR1 resulted in inactivation of the tyrosine kinase domain of the receptor. However, several multilysine FGFR1 mutants, where up to 26 of 29 lysines in the intracellular part of the receptor were mutated, retained tyrosine kinase activity. The active multilysine mutants were poorly ubiquitinated, but internalized normally, indicating that ubiquitination of the receptor is not required for endocytosis. In contrast, degradation of the multilysine mutants was dramatically reduced as the mutants were inefficiently transported to lysosomes but rather sorted to recycling endosomes. The altered sorting resulted in sustained signaling. The duration of FGFR1 signaling seems to be tightly regulated by receptor ubiquitination and subsequent sorting to the lysosomes for degradation
    corecore