33 research outputs found

    Comparison of the cellular and biochemical properties of Plasmodium falciparum choline and ethanolamine kinases.

    Get PDF
    International audienceThe proliferation of the malaria-causing parasite Plasmodium falciparum within the erythrocyte is concomitant with massive phosphatidylcholine and phosphatidylethanolamine biosynthesis. Based on pharmacological and genetic data, de novo biosynthesis pathways of both phospholipids appear to be essential for parasite survival. The present study characterizes PfCK (P. falciparum choline kinase) and PfEK (P. falciparum ethanolamine kinase), which catalyse the first enzymatic steps of these essential metabolic pathways. Recombinant PfCK and PfEK were expressed as His6-tagged fusion proteins from overexpressing Escherichia coli strains, then purified to homogeneity and characterized. Using murine polyclonal antibodies against recombinant kinases, PfCK and PfEK were shown to be localized within the parasite cytoplasm. Protein expression levels increased during erythrocytic development. PfCK and PfEK appeared to be specific to their respective substrates and followed Michaelis-Menten kinetics. The Km value of PfCK for choline was 135.3+/-15.5 microM. PfCK was also able to phosphorylate ethanolamine with a very low affinity. PfEK was found to be an ethanolamine-specific kinase (Km=475.7+/-80.2 microM for ethanolamine). The quaternary ammonium compound hemicholinium-3 and an ethanolamine analogue, 2-amino-1-butanol, selectively inhibited PfCK or PfEK. In contrast, the bis-thiazolium compound T3, which was designed as a choline analogue and is currently in clinical trials for antimalarial treatment, affected PfCK and PfEK activities similarly. Inhibition exerted by T3 was competitive for both PfCK and PfEK and correlated with the impairment of cellular phosphatidylcholine biosynthesis. Comparative analyses of sequences and structures for both kinase types gave insights into their specific inhibition profiles and into the dual capacity of T3 to inhibit both PfCK and PfEK

    Genetic and transcriptional analysis of phosphoinositide-specific phospholipase C in Plasmodium

    Get PDF
    Phosphoinositide-specific phospholipase C (PI-PLC) is a major regulator of calcium-dependent signal transduction, which has been shown to be important in various processes of the malaria parasite Plasmodium. PI-PLC is generally implicated in calcium liberation from intracellular stores through the action of its product, inositol-(1,4,5)-trisphosphate, and is itself dependent on calcium for its activation. Here we describe the plc genes from Plasmodium species. The encoded proteins contain all domains typically found in PI-PLCs of the δ class but are almost twice as long as their orthologues in mammals. Transcriptional analysis by qRT-PCR of plc during the erythrocytic cycle of P. falciparum revealed steady expression levels that increased at the late schizont stages. Genetic analysis in the P. berghei model revealed that the plc locus was targetable but that plc gene knock-outs could not be obtained, thereby strongly indicating that the gene is essential during blood stage development. Alternatively, we attempted to modify plc expression through a promoter exchange approach but found the gene to be refractory to over-expression indicating that plc expression levels might additionally be tightly controlled

    Caractérisations biochimique et cellulaire de la choline et de l éthanolamine kinase de Plasmodium falciparum

    No full text
    Le développement de Plasmodium falciparum, agent du paludisme, est indissociable d une production considérable de membranes par le parasite. Les biosynthèses de phosphatidylcholine (PC) et de phosphatidyléthanolamine (PE), principaux constituants de ces membranes, sont essentielles à la croissance du parasite au cours de son développement intraérythrocytaire, phase durant laquelle sont observés les symptômes cliniques de la maladie. Les travaux de cette thèse ont eu pour objectifs la caractérisation des premières enzymes des voies de synthèse de novo de PC et de PE chez P. falciparum, soit respectivement la choline kinase (PfCK) et l éthanolamine kinase (PfEK). Les paramètres cinétiques ont été déterminés sur les kinases recombinantes exprimées en système bactérien puis purifiées. La PfCK et la PfEK paraissent spécifiques de leur substrat respectif, à savoir la choline et l éthanolamine. Nous avons étudié l inhibition des kinases recombinantes par des composés analogues de substrat et par une nouvelle molécule antipaludique T3/SAR97276A, actuellement en essais cliniques de phase II. Chacune de ces enzymes est inhibée spécifiquement par l analogue de substrat. D autre part, T3, bien que conçu comme un analogue de choline, apparaît être un inhibiteur compétitif de la PfCK mais également de la PfEK. Nous avons immunisé des souris avec les protéines recombinantes purifiées. Au moyen des séra polyclonaux murins reconnaissant spécifiquement la PfCK ou la PfEK, nous avons montré que ces kinases sont localisées dans le cytoplasme de P. falciparum et sont exprimées à tous les stades du cycle érythrocytaire de ce parasite, particulièrement au stade matureMONTPELLIER-BU Pharmacie (341722105) / SudocSudocFranceF

    Caractérisation biochimique et cellulaire des enzymes clés du métabolisme des phospholipides chez Plasmodium falciparum

    No full text
    Le développement du parasite Plasmodium falciparum, responsable du paludisme, nécessite la synthèse de phospholipides et plus particulièrement de phosphatidylcholine (PC) et phosphaditylethanolamine (PE) qui représentent environ 85% de la totalité des phospholidipes du parasite. Leur synthèse s'effectue principalement par les voies métaboliques de novo, voies de Kennedy, en trois étapes enzymatiques. Les enzymes CTP: phosphoethanolamine cytidylyltransferase (ECT) et CTP: phosphocholine cytidylyltransferase (CCT) catalysent les étapes limitantes des deux voies de biosynthèse de la PE et de la PC, respectivement. Ces deux enzymes sont essentielles à la survie du parasite murin, P. berghei et représentent ainsi des cibles thérapeutiques potentielles. La PfCCT est constituée de deux domaines cytidylyltranférases (CT) répétés alors que l'enzyme homologue chez l'homme est composée d'un seul domaine. En revanche, pour la ECT, la présence de deux domaines CT est retrouvée chez toutes les espèces mais les analyses de séquences et de structures ont montré que des résidus importants du site catalytique liant le substrat n'étaient pas conservés dans le domaine CT C-terminal de la PfECT. Ce travail a eu pour but de déterminer les propriétés enzymatiques et les caractéristiques cellulaires de la PfECT et de la PfCCT. Les paramètres cinétiques de ces enzymes ont été quantifiés in vitro à l'aide protéines recombinantes ainsi que sur les enzymes endogènes à l'aide d'extraits parasitaires. Grâce à l'utilisation de protéines recombinantes ponctuellement mutées, nous avons montré que seul le domaine CT N-terminal de la PfECT est catalytiquement actif. Chez P. falciparum, la PfECT et la PfCCT sont exprimées tout au long du cycle intra-érythrocytaire du parasite. La PfECT est présente dans la fraction soluble du parasite alors que la PfCCT apparait aussi bien dans la fraction soluble qu'insoluble. Des expériences d'immunofluorescence ont montré que la PfECT est cytosolique. L'ensemble des résultats présentés apportent un éclairage important sur les fonctions et les propriétés de ces deux cibles potentielles et constituent les premières étapes indispensables à l'élaboration d'une approche thérapeutique.Phospholipids are essential for the growth and development of Plasmodium falciparum malaria parasite. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are its major structural phospholipids. This study focused on CTP: phosphoethanolamine cytidylyltransferase (ECT) and CTP: phosphocholine cytidylyltransferase (CCT) that catalyzes the rate-limiting steps of the de novo Kennedy pathways for PE and PC biosynthesis respectively. Both ECT and CCT are essential in the rodent malaria parasite P. berghei and constitute potential chemotherapeutic targets to fight against malaria. PfCCT consists of two very similar cytidylyltransferase (CT) domains whereas the human enzyme consists of only one CT domain. The presence of two CT domains in ECT seems to be widespread in all the organisms. Sequence and structural analysis showed that the C-terminal CT domain of ECT lacks key residues in the substrate binding motif. This study aimed at unravelling the enzymatic properties and cellular characteristics of PfECT and PfCCT enzymes. In addition, these studies addressed the key question if C-terminal CT domain of PfECT is catalytically active. Kinetic parameters of the enzymes were evaluated in vitro on native proteins as well as on recombinant proteins, the latter being produced in bacterial system. Cellular characterisation studies using polyclonal antisera showed that PfECT and PfCCT are expressed throughout the intra-erythrocytic life cycle of the parasite. PfECT is found mainly in soluble form in the parasite while PfCCT is present in soluble as well as insoluble forms in the parasite. Furthermore, immunofluorescence studies for PfECT revealed that it is mainly cytosolic. To assess the contribution of each CT domain to overall PfECT enzyme activity, recombinant PfECT mutants were generated by site-directed mutagenesis. Kinetic studies on these mutants indicated that the N-terminal CT domain was the only active domain of PfECT. Collectively, these results bring new insights into the kinetic and cellular properties of the enzymes and will pave the way in developing a future pharmacological approach.MONTPELLIER-BU Sciences (341722106) / SudocSudocFranceF

    The Aspergillus nidulans transcription factor AlcR forms a stable complex with its half-site DNA: a NMR study

    Get PDF
    AbstractThe Aspergillus nidulans transcription factor AlcR is shown by NMR and gel retardation assay to form a stable complex with oligonucleotide sequences comprising the consensus half-site 5′-TGCGG-3′. Apparent μM dissociation constants are evaluated by both methods. The measured lifetime of the complex is 74±7 ms at 20°C with the following DNA sequence: 5′-C1G2T3G4C5G6G7A8T9C10-3′. The major chemical shift variations upon binding involve both the two adjacent GC pairs (G6 and G7) and, clearly, the AT pairs at both ends of the consensus sequence (T3 and A8), suggesting additional contacts of the protein with the DNA. This extensive and strong interaction with the half-site is another example of the variability in contacts of the fungal DNA-binding proteins containing Zn2Cys6 domains with their consensus sites. It is the first demonstration that a binuclear cluster protein can bind to DNA as a monomer with strong affinity

    Characterization of the lipid-binding domain of the Plasmodium falciparum CTP:phosphocholine cytidylyltransferase through synthetic-peptide studies.

    No full text
    Phospholipid biosynthesis plays a key role in malarial infection and is regulated by CCT (CTP:phosphocholine cytidylyltransferase). This enzyme belongs to the group of amphitropic proteins which are regulated by reversible membrane interaction. To assess the role of the putative membrane-binding domain of Plasmodium falciparum CCT (PfCCT), we synthesized three peptides, K21, V20 and K54 corresponding to residues 274-294, 308-327 and 274-327 of PfCCT respectively. Conformational behaviour of the peptides, their ability to bind to liposomes and to destabilize lipid bilayers, and their insertion properties were investigated by different biophysical techniques. The intercalation mechanisms of the peptides were refined further by using surface-pressure measurements on various monolayers at the air/water interface. In the present study, we show that the three studied peptides are able to bind to anionic and neutral phospholipids, and that they present an alpha-helical conformation upon lipid binding. Peptides V20 and the full-length K54 intercalate their hydrophobic parts into an anionic bilayer and, to a lesser extent, a neutral one for V20. Peptide K21 interacts only superficially with both types of phospholipid vesicles. Adsorption experiments performed at the air/water interface revealed that peptide K54 is strongly surface-active in the absence of lipid. Peptide V20 presents an atypical behaviour in the presence of phosphatidylserine. Whatever the initial surface pressure of a phosphatidylserine film, peptide V20 and phosphatidylserine entities seem linked together in a special organization involving electrostatic and hydrophobic interactions. We showed that PfCCT presents different lipid-dependence properties from other studied CCTs. Although the lipid-binding domain seems to be located in the C-terminal region of the enzyme, as with the mammalian counterpart, the membrane anchorage, which plays a key role in the enzyme regulation, is driven by two alpha-helices, which behave differently from one another
    corecore