18 research outputs found

    Red blood cell precursor mass as an independent determinant of serum erythropoietin level.

    Full text link
    Serum erythropoietin (sEpo) concentration is primarily related to the rate of renal production and, under the stimulus of hypoxia, increases exponentially as hemoglobin (Hb) decreases. Additional factors, however, appear to influence sEpo, and in this work, we performed studies to evaluate the role of the red blood cell precursor mass. We first compared the relationship of sEpo with Hb in patients with low versus high erythroid activity. The first group included 27 patients with erythroid aplasia or hypoplasia having serum transferrin receptor (sTfR) levels 10 mg/L (erythroid activity > 2 times normal). There was no difference between the two groups with respect to Hb (8.3 +/- 1.6 v 8.0 +/- 1.3 g/dL, P > .05), but sEpo levels were notably higher in patients with low erythroid activity (1,601 +/- 1,542 v 235 +/- 143 mU/mL, P < . 001). In fact, multivariate analysis of variance (ANOVA) showed that, at any given Hb level, sEpo was higher in patients with low erythroid activity (P < .0001). Twenty patients undergoing allogeneic or autologous bone marrow transplantation (BMT) were then investigated. A marked increase in sEpo was seen in all cases at the time of marrow aplasia, disproportionately high when compared with the small decrease in Hb level. Sequential studies were also performed in five patients with iron deficiency anemia undergoing intravenous (IV) iron therapy. Within 24 to 72 hours after starting iron treatment, marked decreases in sEpo (up to one log magnitude) were found before any change in Hb level. Similar observations were made in patients with megaloblastic anemia and in a case of pure red blood cell aplasia. These findings point to an inverse relationship between red blood cell precursor mass and sEpo: at any given Hb level, the higher the number of red blood cell precursors, the lower the sEpo concentration. The most likely explanation for this is that sEpo levels are regulated not only by the rate of renal production, but also by the rate of utilization by erythroid cells

    Prediction of response to recombinant human erythropoietin (rHuEpo) in anemia of malignancy.

    Full text link
    BACKGROUND: Since only a portion of anemic patients outside the uremia setting benefit from erythropoietin treatment, a reliable means of predicting potential responders and nonresponders would be very useful. MATERIALS AND METHODS: We retrospectively reviewed the clinical records of 58 patients with refractory anemia associated with various malignant disorders who had been treated with subcutaneous rHuEpo. The starting rHuEpo dose was 375 U/kg/week for 4 weeks, and was increased to 750 U/kg/week for another 4 weeks if no response was observed. Response was defined as a Hb increase > or = 2 g/dL with no need for blood transfusion. We examined the value of various laboratory parameters (baseline levels, 2-week and 4-week changes) as predictors of response. Endogenous erythropoietin production was evaluated by its serum level and erythroid activity was assessed through reticulocyte count and circulating transferrin receptor. RESULTS: Forty-eight individuals were evaluable, 58% of whom responded to rHuEpo within 8 weeks. Multiple regression analysis showed that 53% of the variation in the 8-week Hb concentration was explained by variations in baseline serum erythropoietin and the 2-week change in serum transferrin receptor (p < 0.001). Based on these two parameters, response prediction in individual patients would have resulted in a sensitivity of 96%, a specificity of 79% and an overall accuracy of 88%. In addition, 58% of the variation in the 8-week Hb was explained by variations in the 4-week changes in Hb and reticulocyte count (p < 0.001). Utilizing these latter parameters and baseline serum erythropoietin, response prediction in individual patients would have resulted in a sensitivity of 92%, a specificity of 82% and an overall accuracy of 88%. CONCLUSIONS: This retrospective analysis suggests that response to rHuEpo can be reasonably predicted by pretreatment serum erythropoietin together with early changes in simple laboratory parameters

    Absent phenotypic expression of X-linked sideroblastic anemia in one of 2 brothers with a novel ALAS2 mutation

    No full text
    X-linked sideroblastic anemia (XLSA) is caused by mutations in the erythroid-specific 5-aminolevulinic acid synthase (ALAS2) gene. Hemizygous males have microcytic anemia and iron overload. A 38-year-old male presented with this phenotype (hemoglobin [Hb] 7.6 g/dL, mean corpuscular volume [MCV] 64 fL, serum ferritin 859 microg/L), and molecular analysis of ALAS2 showed a mutation 1731G>A predicting an Arg560His amino acid change. A 36-year-old brother was hemizygous for this mutation and expressed the mutated ALAS2 mRNA in his reticulocytes, but showed almost no phenotypic expression. All 5 heterozygous females from this family, including the 3 daughters of the nonanemic hemizygous male, showed marginally increased red-cell distribution width (RDW). Although variable penetrance for XLSA in males has been previously described, this is the first report showing that phenotypic expression can be absent in hemizygous males. This observation is relevant to genetic counseling, emphasizing the importance of gene-based diagnosis

    Red blood cell precursor mass as an independent determinant of serum erythropoietin level.

    No full text
    Serum erythropoietin (sEpo) concentration is primarily related to the rate of renal production and, under the stimulus of hypoxia, increases exponentially as hemoglobin (Hb) decreases. Additional factors, however, appear to influence sEpo, and in this work, we performed studies to evaluate the role of the red blood cell precursor mass. We first compared the relationship of sEpo with Hb in patients with low versus high erythroid activity. The first group included 27 patients with erythroid aplasia or hypoplasia having serum transferrin receptor (sTfR) levels 10 mg/L (erythroid activity > 2 times normal). There was no difference between the two groups with respect to Hb (8.3 +/- 1.6 v 8.0 +/- 1.3 g/dL, P > .05), but sEpo levels were notably higher in patients with low erythroid activity (1,601 +/- 1,542 v 235 +/- 143 mU/mL, P < . 001). In fact, multivariate analysis of variance (ANOVA) showed that, at any given Hb level, sEpo was higher in patients with low erythroid activity (P < .0001). Twenty patients undergoing allogeneic or autologous bone marrow transplantation (BMT) were then investigated. A marked increase in sEpo was seen in all cases at the time of marrow aplasia, disproportionately high when compared with the small decrease in Hb level. Sequential studies were also performed in five patients with iron deficiency anemia undergoing intravenous (IV) iron therapy. Within 24 to 72 hours after starting iron treatment, marked decreases in sEpo (up to one log magnitude) were found before any change in Hb level. Similar observations were made in patients with megaloblastic anemia and in a case of pure red blood cell aplasia. These findings point to an inverse relationship between red blood cell precursor mass and sEpo: at any given Hb level, the higher the number of red blood cell precursors, the lower the sEpo concentration. The most likely explanation for this is that sEpo levels are regulated not only by the rate of renal production, but also by the rate of utilization by erythroid cells

    Congenital erythropoietin-dependent erythrocytosis responsive to theophylline treatment.

    No full text
    Description of aq patient with congenital erythropoietin-dependent erythrocytosis responsive to theophylline treatment

    Familial-skewed X-chromosome inactivation as a predisposing factor for late-onset X-linked sideroblastic anemia in carrier females.

    No full text
    X-linked sideroblastic anemia (XLSA) is caused by mutations in the erythroid-specific 5-aminolevulinic acid synthase (ALAS2) gene. An elderly woman who presented with an acquired sideroblastic anemia is studied. Molecular analysis revealed that she was heterozygous for a missense mutation in the ALAS2 gene, but she expressed only the mutated gene in reticulocytes. Her 2 daughters and a granddaughter were heterozygous for this mutation, had normal hemoglobin levels, and expressed the normal ALAS2 gene in reticulocytes. A grandson with a previous diagnosis of thalassemia intermedia was found to be hemizygous for the ALAS2 mutation. Treatment with pyridoxine completely corrected the anemia both in the proband and her grandson. All women who were analyzed in this family showed skewed X-chromosome inactivation in leukocytes, which indicated a hereditary condition associated with unbalanced lyonization. Because the preferentially active X chromosome carried the mutant ALAS2 allele, acquired skewing in the elderly likely worsened the genetic condition and abolished the normal ALAS2 allele expression in the proband

    Soluble transferrin receptor as a potential determinant of iron loading in congenital anaemias due to ineffective erythropoiesis

    No full text
    Congenital anaemias due to ineffective erythropoiesis may be associated with excessive iron absorption and progressive iron loading. We investigated whether the soluble transferrin receptor (TfR) level was related to the degree of iron overload in 20 patients with thalassaemia intermedia, six patients with congenital dyserythropoietic anaemia type II (CDA II) and four patients with X-linked congenital sideroblastic anaemia (XLSA). All but two patients had increased serum ferritin levels (median 601 microgram/l, range 105-2855 microgram/l). Multiple regression analysis showed that 62% (P < 0.0001) of the variation in serum ferritin was explained by age and by changes in soluble TfR

    Both cycling and noncycling primitive progenitors continue to be mobilized into the circulation during the leukapheresis of patients pretreated with chemotherapy and G-CSF.

    No full text
    Colony-forming cells (CFC) and long-term culture-initiating cells (LTC-IC) include a spectrum of progenitor types whose potential contributions to the haemopoietic recovery seen in patients transplanted with mobilized peripheral blood progenitor cells (PBPC) remains unclear. We evaluated both the number and cycling status of the circulating LTC-IC and CFC harvested from 12 patients treated with chemotherapy and G-CSF using a modified 6-week LTC-IC assay. The frequency of the LTC-IC and CFC in the mobilized PB samples were increased 45- and 750-fold, respectively. Interestingly, comparison of these values for PB samples, taken just prior to the start of the leukapheresis, with the progenitor content of the 3 h harvest, showed that, on average, the leukapheresis product contained 19 times more LTC-IC (P < 0.01) than had been detectable in the entire blood volume of the patients at the start of the collection, whereas the number of CFC collected was approximately the same as the number in the initial circulating pool of PBPC. Cycling studies showed many of the LTC-IC in the apheresis collections to be proliferating although not more so than in the steady-state marrow LTC-IC compartment (i.e. per cent kill of mobilized LTC-IC after 16 h in 3H-Tdr = 70 +/- 8%, n = 9). On the other hand, the majority of the CFC in the apheresis collections were initially quiescent (per cent kill after 16 h in 3H-Tdr = 37 +/- 6%, n = 12). These findings demonstrate the rapidity with which a primitive subset of LTC-IC may enter the circulation during the early phase of rebound haemopoiesis induced by chemotherapy plus G-CSF and provide evidence of differences in the mechanisms regulating LTC-IC and CFC mobilization
    corecore