6 research outputs found

    <i>Rickettsia</i> Deregulates Genes Coding for the Neurotoxic Cell Response Pathways in Cerebrocortical Neurons In Vitro

    No full text
    Rickettsial infections of the central nervous system (CNS) are manifested by severe neurological symptoms and represent a serious life-threatening condition. Despite the considerable health danger, only a few studies have been conducted focusing on the pathogenesis induced by Rickettsia sp. in CNS. To investigate the signaling pathways associated with the neurotoxic effects of rickettsiae, we employed an experimental model of cerebrocortical neurons combined with molecular profiling and comprehensive bioinformatic analysis. The cytopathic effect induced by Rickettsia akari and Rickettsia slovaca was demonstrated by decreased neuronal viability, structural changes in cell morphology, and extensive fragmentation of neurites in vitro. Targeted profiling revealed the deregulation of genes involved in the neuroinflammatory and neurotoxic cell response pathways. Although quantitative analysis showed differences in gene expression response, functional annotation revealed that the biological processes are largely shared between both Rickettsia species. The identified enriched pathways are associated with cytokine signaling, chemotaxis of immune cells, responses to infectious agents, interactions between neurons, endothelial and glial cells, and regulation of neuronal apoptotic processes. The findings of our study provide new insight into the etiopathogenesis of CNS infection and further expand the understanding of molecular signaling associated with neuroinvasive Rickettsia species

    Neurofilament light and tau in serum after head-impact exposure in soccer

    No full text
    Introduction: Blood-based biomarkers can provide valuable information on the effects of repetitive head impacts in sports. This study investigated if repetitive headers or accidental head impacts in soccer could cause structural brain injury, detected as an increase in serum neurofilament light (NfL) or tau. Methods: NfL and tau were measured in professional soccer players in pre-season. Then, the effect of three short-term exposures on biomarker levels was assessed: (1) high-intensity exercise, (2) repetitive headers, and (3) head impacts in a match. Results: We analyzed 354 samples and observed no effects on NfL from any of the three short-term exposures. Tau levels rose significantly from baseline to 1 h after (1) high-intensity exercise (Δ0.50 pg/ mL, 95% CI 0.19–0.81, p < .01); the same was observed after (2) repetitive headers (Δ0.29 pg/mL, 95% CI 0.10–0.48, p < .01), but not after (3) accidental head-impact incidents (Δ0.36 pg/mL, 95% CI −0.02–0.74, p = .06). The highest absolute values were seen 1 h after high-intensity exercise (mean±SD, 1.92 ± 0.83 pg/mL). Conclusion: NfL and tau in serum were unaffected by head impacts in soccer. Importantly, tau levels seem to rise in response to exercise, emphasizing the need for control groups. Our findings highlight important characteristics and limitations when using these biomarkers in sports

    Trafficking of immune cells across the blood-brain barrier is modulated by neurofibrillary pathology in tauopathies.

    No full text
    Tauopathies represent a heterogeneous group of neurodegenerative disorders characterized by abnormal deposition of the hyperphosphorylated microtubule-associated protein tau. Chronic neuroinflammation in tauopathies is driven by glial cells that potentially trigger the disruption of the blood-brain barrier (BBB). Pro-inflammatory signaling molecules such as cytokines, chemokines and adhesion molecules produced by glial cells, neurons and endothelial cells, in general, cooperate to determine the integrity of BBB by influencing vascular permeability, enhancing migration of immune cells and altering transport systems. We considered the effect of tau about vascular permeability of peripheral blood cells in vitro and in vivo using primary rat BBB model and transgenic rat model expressing misfolded truncated protein tau. Immunohistochemistry, electron microscopy and transcriptomic analysis were employed to characterize the structural and functional changes in BBB manifested by neurofibrillary pathology in a transgenic model. Our results show that misfolded protein tau ultimately modifies the endothelial properties of BBB, facilitating blood-to-brain cell transmigration. Our results suggest that the increased diapedesis of peripheral cells across the BBB, in response to tau protein, could be mediated by the increased expression of endothelial signaling molecules, namely ICAM-1, VCAM-1, and selectins. We suggest that the compensation of BBB in the diseased brain represents a crucial factor in neurodegeneration of human tauopathies

    Canine Bone Marrow-derived Mesenchymal Stem Cells: Genomics, Proteomics and Functional Analyses of Paracrine Factors

    No full text
    International audienceAdult stem cells have become prominent candidates for treating various diseases in veterinary practice. The main goal of our study was therefore to provide a comprehensive study of canine bone marrow-derived mesenchymal stem cells (BMMSC) and conditioned media, isolated from healthy adult dogs of different breeds. Under well-defined standardized isolation protocols, the multipotent differentiation and specific surface markers of BMMSC were supplemented with their gene expression, proteomic profile, and their biological function. The presented data confirm that canine BMMSC express important genes for differentiation toward osteo-, chondro-, and tendo-genic directions, but also genes associated with angiogenic, neurotrophic, and immunomodulatory properties. Furthermore, using proteome profiling, we identify for the first time the dynamic release of various bioactive molecules, such as transcription and translation factors and osteogenic, growth, angiogenic, and neurotrophic factors from canine BMMSC conditioned medium. Importantly, the relevant genes were linked to their proteins as detected in the conditioned medium and further associated with angiogenic activity in chorioallantoic membrane (CAM) assay. In this way, we show that the canine BMMSC release a variety of bioactive molecules, revealing a strong paracrine component that may possess therapeutic potential in various pathologies. However, extensive experimental or preclinical trials testing canine sources need to be performed in order to better understand their paracrine action, which may lead to novel therapeutic strategies in veterinary medicine

    ADAMANT: a placebo-controlled randomized phase 2 study of AADvac1, an active immunotherapy against pathological tau in Alzheimer’s disease

    No full text
    Alzheimer’s disease (AD) pathology is partly characterized by accumulation of aberrant forms of tau protein. Here we report the results of ADAMANT, a 24-month double-blinded, parallel-arm, randomized phase 2 multicenter placebo-controlled trial of AADvac1, an active peptide vaccine designed to target pathological tau in AD (EudraCT 2015-000630-30). Eleven doses of AADvac1 were administered to patients with mild AD dementia at 40 μg per dose over the course of the trial. The primary objective was to evaluate the safety and tolerability of long-term AADvac1 treatment. The secondary objectives were to evaluate immunogenicity and efficacy of AADvac1 treatment in slowing cognitive and functional decline. A total of 196 patients were randomized 3:2 between AADvac1 and placebo. AADvac1 was safe and well tolerated (AADvac1 n = 117, placebo n = 79; serious adverse events observed in 17.1% of AADvac1-treated individuals and 24.1% of placebo-treated individuals; adverse events observed in 84.6% of AADvac1-treated individuals and 81.0% of placebo-treated individuals). The vaccine induced high levels of IgG antibodies. No significant effects were found in cognitive and functional tests on the whole study sample (Clinical Dementia Rating-Sum of the Boxes scale adjusted mean point difference −0.360 (95% CI −1.306, 0.589)), custom cognitive battery adjusted mean z-score difference of 0.0008 (95% CI −0.169, 0.172). We also present results from exploratory and post hoc analyses looking at relevant biomarkers and clinical outcomes in specific subgroups. Our results show that AADvac1 is safe and immunogenic, but larger stratified studies are needed to better evaluate its potential clinical efficacy and impact on disease biomarkers
    corecore