4 research outputs found

    Colorimetric Test for Fast Detection of SARS-CoV-2 in Nasal and Throat Swabs

    Get PDF
    Mass testing is fundamental to face the pandemic caused by the coronavirus SARS-CoV-2 discovered at the end of 2019. To this aim, it is necessary to establish reliable, fast, and cheap tools to detect viral particles in biological material so to identify the people capable of spreading the infection. We demonstrate that a colorimetric biosensor based on gold nanoparticle (AuNP) interaction induced by SARS-CoV-2 lends itself as an outstanding tool for detecting viral particles in nasal and throat swabs. The extinction spectrum of a colloidal solution of multiple viral-target gold nanoparticles-AuNPs functionalized with antibodies targeting three surface proteins of SARS-CoV-2 (spike, envelope, and membrane)-is red-shifted in few minutes when mixed with a solution containing the viral particle. The optical density of the mixed solution measured at 560 nm was compared to the threshold cycle (Ct) of a real-time PCR (gold standard for detecting the presence of viruses) finding that the colorimetric method is able to detect very low viral load with a detection limit approaching that of the real-time PCR. Since the method is sensitive to the infecting viral particle rather than to its RNA, the achievements reported here open a new perspective not only in the context of the current and possible future pandemics, but also in microbiology, as the biosensor proves itself to be a powerful though simple tool for measuring the viral particle concentration

    Trichoderma spp. and a carob (Ceratonia siliqua) galactomannan to control the root-knot nematode Meloidogyne incognita on tomato plants

    No full text
    Restrictions about the use of chemicals have limited the availability of control measures against plant-parasitic nematodes. The search for more sustainable approaches has focused the attention on biological control agents, such as Trichoderma species. In recent years, there has been a growing interest in the use of biopolymers for a wide range of applications. These polysaccharide-based compounds may be 20 good carriers of microbial agents or act as barriers against pathogens or pests for their ability to form coating films. In this study, we evaluated the combination of a biopolymer obtained from the leguminous plant Ceratonia siliqua and T. harzianum M10, T. atroviride P1 or T. longibrachiatum MK1, as root protector or adjuvant agents, for the management of the root-knot nematode Meloidogyne incognita. Coating tomato roots with the carob galactomannan biopolymer followed by soil application of selected Trichoderma strains reduced the root galling index caused by M. incognita and soil nematode population in comparison to untreated control under greenhouse conditions. 25 Scanning electron microscopy revealed that coated tomato roots were embedded within a polymeric material. The sedimentation test showed that the addition of this biopolymer retarded the tendency of Trichoderma spores to settle in the bottom of aqueous suspension. In conclusion, beneficial fungi combined or formulated with a biopolymer could represent a promising strategy to increase their activity in plant protection and enhance their proliferation or distribution into rhizosphere
    corecore