17 research outputs found

    Interactions of cell division protein FtsZ with large and small molecules

    Get PDF

    Interactions of cell division protein FtsZ with large and small molecules

    Get PDF

    Interactions of cell division protein FtsZ with large and small molecules

    Get PDF

    Interactions of cell division protein FtsZ with large and small molecules

    Get PDF
    Bacteria are one of the most important microorganisms in biotechnology and in our life. They play many good roles for humans, e.g. by breaking down food and producing certain vitamins and nutrients in the human gastrointestinal tract. However, a small number of bacteria, called pathogens, may also cause serious infections and diseases. These bacteria are extensively studied for centuries in order to better understand their internal mechanisms. The knowledge gained from these studies is used to search for weak points in bacteria, which can be targeted by popular drugs called antibiotics. The weak points in bacteria are mechanisms that are essential for viability or normal function, and, when blocked, completely inactivate the whole bacterial organism. These mechanisms include among others: essential protein biosynthesis pathways, synthesis of the bacterial cell wall, and cell division, the mechanism that allows bacteria to proliferate. In our work we tried to better understand the cell division process in two bacterial species, Bacillus subtilis and Escherichia coli. To this end we used essential protein FtsZ, which is the key player of cell division. In our work we studied FtsZ alone; in the presence of other proteins that directly interact with FtsZ; and in the presence of small molecules, which could potentially block FtsZ and bacterial cell division, thus act as antibacterial agents. The work described in my thesis enhances our knowledge of bacterial cell division and contributes to research in antibiotic development

    The Role of Macrophages in Cancer Development and Therapy

    Get PDF
    Macrophages are critical mediators of tissue homeostasis and influence various aspects of immunity. Tumor-associated macrophages are one of the main cellular components of the tumor microenvironment. Depending on their activation status, macrophages can exert a dual influence on tumorigenesis by either antagonizing the cytotoxic activity of immune cells or, less frequently, by enhancing antitumor responses. In most situations, TAMs suppress T cell recruitment and function or regulate other aspects of tumor immunity. The importance of TAMs targeting in cancer therapy is derived from the strong association between the high infiltration of TAMs in the tumor tissue with poor patient prognosis. Several macrophage-targeting approaches in anticancer therapy are developed, including TAM depletion, inhibition of new TAM differentiation, or re-education of TAM activation for cancer cell phagocytosis. In this review, we will describe the role of TAMs in tumor development, including such aspects as protumorigenic inflammation, immune suppression, neoangiogenesis, and enhancement of tissue invasion and distant metastasis. Furthermore, we will discuss therapeutic approaches that aim to deplete TAMs or, on the contrary, re-educate TAMs for cancer cell phagocytosis and antitumor immunity

    Tumor Microenvironment of Hepatocellular Carcinoma:Challenges and Opportunities for New Treatment Options

    Get PDF
    The prevalence of liver cancer is constantly rising, with increasing incidence and mortality in Europe and the USA in recent decades. Among the different subtypes of liver cancers, hepatocellular carcinoma (HCC) is the most commonly diagnosed liver cancer. Besides advances in diagnosis and promising results of pre-clinical studies, HCC remains a highly lethal disease. In many cases, HCC is an effect of chronic liver inflammation, which leads to the formation of a complex tumor microenvironment (TME) composed of immune and stromal cells. The TME of HCC patients is a challenge for therapies, as it is involved in metastasis and the development of resistance. However, given that the TME is an intricate system of immune and stromal cells interacting with cancer cells, new immune-based therapies are being developed to target the TME of HCC. Therefore, understanding the complexity of the TME in HCC will provide new possibilities to design novel and more effective immunotherapeutics and combinatorial therapies to overcome resistance to treatment. In this review, we describe the role of inflammation during the development and progression of HCC by focusing on TME. We also describe the most recent therapeutic advances for HCC and possible combinatorial treatment options

    CD24 Is a Potential Immunotherapeutic Target for Mantle Cell Lymphoma

    Get PDF
    CD24 and its ligand Siglec-10 were described as an innate immune checkpoint in carcinoma. Here, we investigated this axis in B-cell lymphoma by assessing CD24 expression and evaluating pro-phagocytic effects of CD24 antibody treatment in comparison to hallmark immune checkpoint CD47. In mantle cell lymphoma (MCL) and follicular lymphoma patients, high mRNA expression of CD24 correlated with poor overall survival, whereas CD47 expression did not. Conversely, CD24 expression did not correlate with survival in diffuse large B-cell lymphoma (DLBCL), whereas CD47 did. CD24 was also highly expressed on MCL cell lines, where treatment with CD24 antibody clones SN3 or ML5 potently induced phagocytosis, with SN3 yielding >90% removal of MCL cells and triggering phagocytosis of primary patient-derived MCL cells by autologous macrophages. Treatment with CD24 mAb was superior to CD47 mAb in MCL and was comparable in magnitude to the effect observed in carcinoma lines. Reversely, CD24 mAb treatment was less effective than CD47 mAb treatment in DLBCL. Finally, phagocytic activity of clone SN3 appeared at least partly independent of antibody-dependent cellular phagocytosis (ADCP), suggesting CD24/Siglec-10 checkpoint activity, whereas clone ML5 solely induced ADCP. In conclusion, CD24 is an immunotherapeutic target of potential clinical relevance for MCL, but not DLBCL

    CD47 Expression Defines Efficacy of Rituximab with CHOP in Non-Germinal Center B-cell (Non-GCB) Diffuse Large B-cell Lymphoma Patients (DLBCL), but Not in GCB DLBCL

    Get PDF
    Addition of rituximab (R) to "CHOP" (cyclophosphamide, doxorubicin, vincristine, and prednisone) chemotherapy improved outcome for diffuse large B-cell lymphoma (DLBCL) patients. Approximately 40% of patients who receive R-CHOP still succumb to disease due to intrinsic resistance or relapse. A potential negative regulator of DLBCL treatment outcome is the CD47 "don't eat me" immune checkpoint. To delineate the impact of CD47, we used a clinically and molecularly well-annotated cohort of 939 DLBCL patients, comprising both germinal center B-cell (GCB) and non-GCB DLBCL subtypes, treated with either CHOP or R-CHOP. High (above median) CD47 mRNA expression correlated with a detrimental effect on overall survival (OS) when DLBCL patients received R-CHOP therapy (P = 0.001), but not CHOP therapy (P = 0.645). Accordingly, patients with low CD47 expression benefited most from the addition of rituximab to CHOP [HR, 0.32; confidence interval (CI), 0.21-0.50; P <0.001]. This negative impact of high CD47 expression on OS after R-CHOP treatment was only evident in cancers of non-GCB origin (HR, 2.09; CI, 1.26-3.47; P = 0.004) and not in the GCB subtype (HR, 1.16; CI, 0.68-1.99; P = 0.58). This differential impact of CD47 in non-GCB and GCB was confirmed in vitro, as macrophage-mediated phagocytosis stimulated by rituximab was augmented by CD47-blocking antibody only in non-GCB cell lines. Thus, high expression of CD47 mRNA limited the benefit of addition of rituximab to CHOP in non-GCB patients, and CD47-blockade only augmented rituximab-mediated phagocytosis in non-GCB cell lines. Patients with non-GCB DLBCL may benefit from CD47-targeted therapy in addition to rituximab

    DSP107 combines inhibition of CD47/SIRPĪ± axis with activation of 4-1BB to trigger anticancer immunity

    Get PDF
    BACKGROUND: Treatment of Diffuse Large B Cell Lymphoma (DLBCL) patients with rituximab and the CHOP treatment regimen is associated with frequent intrinsic and acquired resistance. However, treatment with a CD47 monoclonal antibody in combination with rituximab yielded high objective response rates in patients with relapsed/refractory DLBCL in a phase I trial. Here, we report on a new bispecific and fully human fusion protein comprising the extracellular domains of SIRPĪ± and 4-1BBL, termed DSP107, for the treatment of DLBCL. DSP107 blocks the CD47:SIRPĪ± ā€˜donā€™t eat meā€™ signaling axis on phagocytes and promotes innate anticancer immunity. At the same time, CD47-specific binding of DSP107 enables activation of the costimulatory receptor 4-1BB on activated T cells, thereby, augmenting anticancer T cell immunity. METHODS: Using macrophages, polymorphonuclear neutrophils (PMNs), and T cells of healthy donors and DLBCL patients, DSP107-mediated reactivation of immune cells against B cell lymphoma cell lines and primary patient-derived blasts was studied with phagocytosis assays, T cell activation and cytotoxicity assays. DSP107 anticancer activity was further evaluated in a DLBCL xenograft mouse model and safety was evaluated in cynomolgus monkey. RESULTS: Treatment with DSP107 alone or in combination with rituximab significantly increased macrophage- and PMN-mediated phagocytosis and trogocytosis, respectively, of DLBCL cell lines and primary patient-derived blasts. Further, prolonged treatment of in vitro macrophage/cancer cell co-cultures with DSP107 and rituximab decreased cancer cell number by up to 85%. DSP107 treatment activated 4-1BB-mediated costimulatory signaling by HT1080.4-1BB reporter cells, which was strictly dependent on the SIRPĪ±-mediated binding of DSP107 to CD47. In mixed cultures with CD47-expressing cancer cells, DSP107 augmented T cell cytotoxicity in vitro in an effector-to-target ratio-dependent manner. In mice with established SUDHL6 xenografts, the treatment with human PBMCs and DSP107 strongly reduced tumor size compared to treatment with PBMCs alone and increased the number of tumor-infiltrated T cells. Finally, DSP107 had an excellent safety profile in cynomolgus monkeys. CONCLUSIONS: DSP107 effectively (re)activated innate and adaptive anticancer immune responses and may be of therapeutic use alone and in combination with rituximab for the treatment of DLBCL patients. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13046-022-02256-x
    corecore