57 research outputs found
The video head impulse test predicts the ability to reweight vestibular information during stance in patients with vestibular disorders
INTRODUCTION: During stance, vestibular information is used and weighted based on its reliability. Vestibular deficits affect the reliability of vestibular information and therefore affect the ability to reweight vestibular information during stance. Vestibular information during stance mainly consists of frequencies up to 5 Hz. However, vestibular-ocular reflex (VOR) tests designed to detect vestibular deficits mainly operate in restricted frequency ranges such as 0.002 - 0.004 Hz for the caloric test, 0.1 - 1 Hz for the rotational chair test and 1 - 6 Hz for the head impulse test. In this study we investigated how these three VOR tests are related to the ability to reweight vestibular information under different sensory disturbance conditions in patients with vestibular disorders. METHODS: 11 Patients (5 female) with vestibular disorders (mean ± SD age: 59.3 ± 9.9 years) were included. All patients underwent VOR examination using videonystagmography during bilateral cold caloric test, the rotational chair test at horizontal harmonic oscillations of the chair at 0.4 Hz and the head impulse test. In addition, balance control experiments were conducted using continuous support surface rotations (SS) which followed a pseudo-random ternary sequence (PRTS). Patients stood with their eyes closed during two SS conditions: 1) 0.5 degrees peak-to-peak amplitude and 2) 1.0 degrees peak-to-peak amplitude. System identification and parameter estimation were used to estimate balance control model parameters, including the vestibular weight Wv which indicates how much patients relied on vestibular information in each condition. Spearman correlation coefficients were calculated to establish the relation between VOR tests (caloric test, rotational chair test and head impulse test) and the difference in the vestibular weight (Wv_diff) between 0.5 and 1.0 degrees peak-to-peak amplitude. RESULTS: Only the head impulse test was significantly related to Wv_diff (ρ = -0.67, p = 0.033), indicating that patients who showed more asymmetric ocular responses to left and right head impulses showed less sensory reweighting between SS conditions during balance control. DISCUSSION: Our results suggest that out of the three VOR tests included in this study the video head impulse test is most predictive of a reduced ability to reweight vestibular information during stance in patients with vestibular disorders. The video head impulse test mainly operates in the 1-6 Hz frequency range, which is comparable to the frequency range of joint torque and body sway oscillations and could therefore explain this high association
New insights into the pathogenesis and therapeutics of episodic ataxia type 1
Episodic ataxia type 1 (EA1) is a K+ channelopathy characterized by a broad spectrum of symptoms. Generally, patients may experience constant myokymia and dramatic episodes of spastic contractions of the skeletal muscles of the head, arms, and legs with loss of both motor coordination and balance. During attacks additional symptoms may be reported such as vertigo, blurred vision, diplopia, nausea, headache, diaphoresis, clumsiness, stiffening of the body, dysarthric speech, and difficulty in breathing. These episodes may be precipitated by anxiety, emotional stress, fatigue, startle response or sudden postural changes. Epilepsy is overrepresented in EA1. The disease is inherited in an autosomal dominant manner, and genetic analysis of several families has led to the discovery of a number of point mutations in the voltage-dependent K+ channel gene KCNA1 (Kv1.1), on chromosome 12p13. To date KCNA1 is the only gene known to be associated with EA1. Functional studies have shown that these mutations impair Kv1.1 channel function with variable effects on channel assembly, trafficking and biophysics. Despite the solid evidence obtained on the molecular mechanisms underlying EA1, how these cause dysfunctions within the central and peripheral nervous systems circuitries remains elusive. This review summarizes the main breakthrough findings in EA1, discusses the neurophysiological mechanisms underlying the disease, current therapies, future challenges and opens a window onto the role of Kv1.1 channels in central nervous system (CNS) and peripheral nervous system (PNS) functions.peer-reviewe
Kcnj16 (Kir5.1) gene ablation causes subfertility and increases the prevalence of morphologically abnormal spermatozoa
The ability of spermatozoa to swim towards an oocyte and fertilize it depends on precise K+ permeability changes. Kir5.1 is an inwardly-rectifying potassium (Kir) channel with high sensitivity to intracellular H+ (pHi) and extracellular K+ concentration [K+ ]o, and hence provides a link between pHi and [K+ ]o changes and membrane potential. The intrinsic pHi sensitivity of Kir5.1 suggests a possible role for this channel in the pHi-dependent processes that take place during fertilization. However, despite the localization of Kir5.1 in murine spermatozoa, and its increased expression with age and sexual maturity, the role of the channel in sperm morphology, maturity, motility, and fertility is unknown. Here, we confirmed the presence of Kir5.1 in spermatozoa and showed strong expression of Kir4.1 channels in smooth muscle and epithelial cells lining the epididymal ducts. In contrast, Kir4.2 expression was not detected in testes. To examine the possible role of Kir5.1 in sperm physiology, we bred mice with a deletion of the Kcnj16 (Kir5.1) gene and observed that 20% of Kir5.1 knock-out male mice were infertile. Furthermore, 50% of knock-out mice older than 3 months were unable to breed. By contrast, 100% of wild-type (WT) mice were fertile. The genetic inactivation of Kcnj16 also resulted in smaller testes and a greater percentage of sperm with folded flagellum compared to WT littermates. Nevertheless, the abnormal sperm from mutant animals displayed increased progressive motility. Thus, ablation of the Kcnj16 gene identifies Kir5.1 channel as an important element contributing to testis development, sperm flagellar morphology, motility, and fertility. These findings are potentially relevant to the understanding of the complex pHi-and [K+ ]o-dependent interplay between different sperm ion channels, and provide insight into their role in fertilization and infertility
Electromechanical coupling of the Kv1.1 voltage-gated K+ channel is fine-tuned by the simplest amino acid residue in the S4-S5 linker
Investigating the Shaker-related K+ channel Kv1.1, the dysfunction of which is responsible for episodic ataxia 1 (EA1), at the functional and molecular level provides valuable understandings on normal channel dynamics, structural correlates underlying voltage-gating, and disease-causing mechanisms. Most studies focused on apparently functional amino acid residues composing voltage-gated K+ channels, neglecting the simplest ones. Glycine at position 311 of Kv1.1 is highly conserved both evolutionarily and within the Kv channel superfamily, is located in a region functionally relevant (the S4-S5 linker), and results in overt disease when mutated (p.G311D). By mutating the G311 residue to aspartate, we show here that the channel voltage-gating, activation, deactivation, inactivation, and window currents are markedly affected. In silico, modeling shows this glycine residue is strategically placed at one end of the linker helix which must be free to both bend and move past other portions of the protein during the channel’s opening and closing. This is befitting of a glycine residue as its small neutral side chain allows for movement unhindered by interaction with any other amino acid. Results presented reveal the crucial importance of a distinct glycine residue, within the S4-S5 linker, in the voltage-dependent electromechanical coupling that control channel gating
Systematic evaluation of a knee exoskeleton misalignment compensation mechanism using a robotic dummy leg
The objective and quantitative assessment of physical human-exoskeletons interaction (pHEI) represents a pressing necessity in the wearable robots field. This process remains of difficult execution, especially for early stage devices, in which the inclusion of human testing could pose ethical and safety concerns. This manuscript proposes a methodology for pHEI assessment based on an active dummy leg named Leg Replica, which is able to sense interaction forces while wearing an exoskeleton. We tested this methodology on a wearable active knee exoskeleton prototype, with the goal to evaluate the effects of a misalignment compensation mechanism. Through this methodology, it was possible to show how the misalignment compensation mechanism was able to reduce the interaction forces during passive exoskeleton motion. Such reduction was less evident when the exoskeleton was active. The tests allowed to identify specific points of improvements for the exoskeleton, enabling a more specific upgrade of the device based on these experimental results. This study demonstrates the ability of the proposed methodology to objectively benchmark different aspects of pHEI, and to accelerate the iterative development of new devices prior to human testing
Recommended from our members
Mining balance disorders' data for the development of diagnostic decision support systems
In this work we present the methodology for the development of the EMBalance diagnostic Decision Support System (DSS) for balance disorders. Medical data from patients with balance disorders have been analysed using data mining techniques for the development of the diagnostic DSS. The proposed methodology uses various data, ranging from demographic characteristics to clinical examination, auditory and vestibular tests, in order to provide an accurate diagnosis. The system aims to provide decision support for general practitioners (GPs) and experts in the diagnosis of balance disorders as well as to provide recommendations for the appropriate information and data to be requested at each step of the diagnostic process. Detailed results are provided for the diagnosis of 12 balance disorders, both for GPs and experts. Overall, the reported accuracy ranges from 59.3 to 89.8% for GPs and from 74.3 to 92.1% for experts
Differential postural effects of plantar-flexor muscles fatigue under normal, altered and improved vestibular and neck somatosensory conditions
The aim of the present study was to assess the effects of plantar-flexor
muscles fatigue on postural control during quiet standing under normal, altered
and improved vestibular and neck somatosensory conditions. To address this
objective, young male university students were asked to stand upright as still
as possible with their eyes closed in two conditions of No Fatigue and Fatigue
of the plantar-flexor muscles. In Experiment 1 (n=15), the postural task was
executed in two Neutral head and Head tilted backward postures, recognized to
degrade vestibular and neck somatosensory information. In Experiment 2 (n=15),
the postural task was executed in two conditions of No tactile and Tactile
stimulation of the neck provided by the application of strips of adhesive
bandage to the skin over and around the neck. Centre of foot pressure
displacements were recorded using a force platform. Results showed that (1) the
Fatigue condition yielded increased CoP displacements relative to the No
Fatigue condition (Experiment 1 and Experiment 2), (2) this destabilizing
effect was more accentuated in the Head tilted backward posture than Neutral
head posture (Experiment 1) and (3) this destabilizing effect was less
accentuated in the condition of Tactile stimulation than that of No tactile
stimulation of the neck (Experiment 2). In the context of the multisensory
control of balance, these results suggest an increased reliance on vestibular
and neck somatosensory information for controlling posture during quiet
standing in condition of altered ankle neuromuscular function
Getting the right balance: insole design alters the static balance of people with diabetes and neuropathy
BACKGROUND: Over 1 in 3 older people with diabetes sustain a fall each year. Postural instability has been identified as independent risk factor for falls within people with Diabetic Peripheral Neuropathy (DPN). People with DPN, at increased risk of falls, are routinely required to wear offloading insoles, yet the impact of these insoles on postural stability and postural control is unknown. The aim of this study was to evaluate the effect of a standard offloading insole and its constituent parts on the balance in people with DPN. METHODS: A random sample of 50 patients with DPN were observed standing for 3 × 30 s, and stepping in response to a light, under five conditions presented in a random order; as defined by a computer program; 1) no insole, 2) standard diabetic: a standard offloading insole made from EVA/poron®, and three other insoles with one design component systematically altered 3) flat: diabetic offloading insole with arch fill removed, 4) low resilient memory: diabetic offloading insole with the cover substituted with low resilience memory V9, 5) textured: diabetic offloading insole with a textured PVC surface added (Algeos Ltd). After each condition participants self-rated perceived steadiness. RESULTS: Insole design effected static balance and balance perception, but not stepping reaction time in people with DPN. The diabetic and memory shaped insoles (with arch fill) significantly increased centre of pressure velocity (14 %, P = 0.006), (13 %, P = 0.001), and path length (14 %, P = 0.006), (13 %, P = 001), when compared to the no insole condition. The textured shaped and flat soft insole had no effect on static balance when compared to the no insole condition (P > 0.05). CONCLUSION: Insoles have an effect on static balance but not stepping reaction time. This effect is independent of neuropathy severity. The addition of a textured cover seems to counter the negative effect of an arch fill, even in participants with severe sensation loss. Static balance is unaffected by material softness or resilience. Current best practice of providing offloading insoles, with arch fill, to increase contact area and reduce peak pressure could be making people more unstable. Whilst flat, soft insoles maybe the preferable design option for those with poor balance. There is a need to develop an offloading insole that can reduce diabetic foot ulcer risk, without compromising balance
Tradeoff between Stability and Maneuverability during Whole-Body Movements
Understanding how stability and/or maneuverability affects motor control strategies can provide insight on moving about safely in an unpredictable world. Stability in human movement has been well-studied while maneuverability has not. Further, a tradeoff between stability and maneuverability during movement seems apparent, yet has not been quantified. We proposed that greater maneuverability, the ability to rapidly and purposefully change movement direction and speed, is beneficial in uncertain environments. We also hypothesized that gaining maneuverability comes at the expense of stability and perhaps also corresponds with decreased muscle coactivation.We used a goal-directed forward lean movement task that integrated both stability and maneuverability. Subjects (n = 11) used their center of pressure to control a cursor on a computer monitor to reach a target. We added task uncertainty by shifting the target anterior-posterior position mid-movement. We used a balance board with a narrow beam that reduced the base of support in the medio-lateral direction and defined stability as the probability that subjects could keep the balance board level during the task.During the uncertainty condition, subjects were able to change direction of their anterior-posterior center of pressure more rapidly, indicating that subjects were more maneuverable. Furthermore, medio-lateral center of pressure excursions also approached the edges of the beam and reduced stability margins, implying that subjects were less stable (i.e. less able to keep the board level). On the narrow beam board, subjects increased muscle coactivation of lateral muscle pairs and had greater muscle activity in the left leg. However, there were no statistically significant differences in muscle activity amplitudes or coactivation with uncertainty.These results demonstrate that there is a tradeoff between stability and maneuverability during a goal-directed whole-body movement. Tasks with added uncertainty could help individuals learn to be more maneuverable yet sufficiently stable
Non-linear stimulus-response behavior of the human stance control system is predicted by optimization of a system with sensory and motor noise
We developed a theory of human stance control that predicted (1) how subjects re-weight their utilization of proprioceptive and graviceptive orientation information in experiments where eyes closed stance was perturbed by surface-tilt stimuli with different amplitudes, (2) the experimentally observed increase in body sway variability (i.e. the “remnant” body sway that could not be attributed to the stimulus) with increasing surface-tilt amplitude, (3) neural controller feedback gains that determine the amount of corrective torque generated in relation to sensory cues signaling body orientation, and (4) the magnitude and structure of spontaneous body sway. Responses to surface-tilt perturbations with different amplitudes were interpreted using a feedback control model to determine control parameters and changes in these parameters with stimulus amplitude. Different combinations of internal sensory and/or motor noise sources were added to the model to identify the properties of noise sources that were able to account for the experimental remnant sway characteristics. Various behavioral criteria were investigated to determine if optimization of these criteria could predict the identified model parameters and amplitude-dependent parameter changes. Robust findings were that remnant sway characteristics were best predicted by models that included both sensory and motor noise, the graviceptive noise magnitude was about ten times larger than the proprioceptive noise, and noise sources with signal-dependent properties provided better explanations of remnant sway. Overall results indicate that humans dynamically weight sensory system contributions to stance control and tune their corrective responses to minimize the energetic effects of sensory noise and external stimuli
- …