30 research outputs found

    Mixture models and wavelet transforms reveal high confidence RNA-protein interaction sites in MOV10 PAR-CLIP data

    Get PDF
    The Photo-Activatable Ribonucleoside-enhanced CrossLinking and ImmunoPrecipitation (PAR-CLIP) method was recently developed for global identification of RNAs interacting with proteins. The strength of this versatile method results from induction of specific T to C transitions at sites of interaction. However, current analytical tools do not distinguish between non-experimentally and experimentally induced transitions. Furthermore, geometric properties at potential binding sites are not taken into account. To surmount these shortcomings, we developed a two-step algorithm consisting of a non-parametric two-component mixture model and a wavelet-based peak calling procedure. Our algorithm can reduce the number of false positives up to 24% thereby identifying high confidence interaction sites. We successfully employed this approach in conjunction with a modified PAR-CLIP protocol to study the functional role of nuclear Moloney leukemia virus 10, a putative RNA helicase interacting with Argonaute2 and Polycomb. Our method, available as the R package wavClusteR, is generally applicable to any substitution-based inference problem in genomic

    An efficient strategy for TALEN-mediated genome engineering in Drosophila

    Get PDF
    In reverse genetics, a gene's function is elucidated through targeted modifications in the coding region or associated DNA cis-regulatory elements. To this purpose, recently developed customizable transcription activator-like effector nucleases (TALENs) have proven an invaluable tool, allowing introduction of double-strand breaks at predetermined sites in the genome. Here we describe a practical and efficient method for the targeted genome engineering in Drosophila. We demonstrate TALEN-mediated targeted gene integration and efficient identification of mutant flies using a traceable marker phenotype. Furthermore, we developed an easy TALEN assembly (easyT) method relying on simultaneous reactions of DNA Bae I digestion and ligation, enabling construction of complete TALENs from a monomer unit library in a single day. Taken together, our strategy with easyT and TALEN-plasmid microinjection simplifies mutant generation and enables isolation of desired mutant fly lines in the F1 generatio

    Oncogenic Ras and ΔNp63α cooperate to recruit immunosuppressive polymorphonuclear myeloid-derived suppressor cells in a mouse model of squamous cancer pathogenesis

    Get PDF
    IntroductionAmplification of human chromosome 3q26-29, which encodes oncoprotein ΔNp63 among other isoforms of the p63 family, is a feature common to squamous cell carcinomas (SCCs) of multiple tissue origins. Along with overexpression of ΔNp63, activation of the protooncogene, RAS, whether by overexpression or oncogenic mutation, is frequently observed in many cancers. In this study, analysis of transcriptome data from The Cancer Genome Atlas (TCGA) demonstrated that expression of TP63 mRNA, particularly ΔNp63 isoforms, and HRAS are significantly elevated in advanced squamous cell carcinomas of the head and neck (HNSCCs), suggesting pathological significance. However, how co-overexpressed ΔNp63 and HRAS affect the immunosuppressive tumor microenvironment (TME) is incompletely understood.MethodsHere, we established and characterized an immune competent mouse model using primary keratinocytes with retroviral-mediated overexpression of ΔNp63α and constitutively activated HRAS (v-rasHa G12R) to evaluate the role of these oncogenes in the immune TME.ResultsIn this model, orthotopic grafting of wildtype syngeneic keratinocytes expressing both v-rasHa and elevated levels of ΔNp63α consistently yield carcinomas in syngeneic hosts, while cells expressing v-rasHa alone yield predominantly papillomas. We found that polymorphonuclear (PMN) myeloid cells, experimentally validated to be immunosuppressive and thus representing myeloid-derived suppressor cells (PMN-MDSCs), were significantly recruited into the TME of carcinomas arising early following orthotopic grafting of ΔNp63α/v-rasHa-expressing keratinocytes. ΔNp63α/v-rasHa-driven carcinomas expressed higher levels of chemokines implicated in recruitment of MDSCs compared to v-rasHa-initiated tumors, providing a heretofore undescribed link between ΔNp63α/HRAS-driven carcinomas and the development of an immunosuppressive TME.ConclusionThese results support the utilization of a genetic carcinogenesis model harboring specific genomic drivers of malignancy to study mechanisms underlying the development of local immunosuppression

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Sensitive and highly resolved identification of RNA-protein interaction sites in PAR-CLIP data

    Get PDF
    Background PAR-CLIP is a recently developed Next Generation Sequencing-based method enabling transcriptome-wide identification of interaction sites between RNA and RNA-binding proteins. The PAR-CLIP procedure induces specific base transitions that originate from sites of RNA-protein interactions and can therefore guide the identification of binding sites. However, additional sources of transitions, such as cell type-specific SNPs and sequencing errors, challenge the inference of binding sites and suitable statistical approaches are crucial to control false discovery rates. In addition, a highly resolved delineation of binding sites followed by an extensive downstream analysis is necessary for a comprehensive characterization of the protein binding preferences and the subsequent design of validation experiments. Results We present a statistical and computational framework for PAR-CLIP data analysis. We developed a sensitive transition-centered algorithm specifically designed to resolve protein binding sites at high resolution in PAR-CLIP data. Our method employes a Bayesian network approach to associate posterior log-odds with the observed transitions, providing an overall quantification of the confidence in RNA-protein interaction. We use published PAR-CLIP data to demonstrate the advantages of our approach, which compares favorably with alternative algorithms. Lastly, by integrating RNA-Seq data we compute conservative experimentally-based false discovery rates of our method and demonstrate the high precision of our strategy. Conclusions Our method is implemented in the R package wavClusteR 2.0. The package is distributed under the GPL-2 license and is available from BioConductor at http://www.bioconductor.org/packages/devel/bioc/html/wavClusteR.html.ISSN:1471-210

    Mixture models and wavelet transforms reveal high confidence RNA-protein interaction sites in MOV10 PAR-CLIP data

    Get PDF
    The Photo-Activatable Ribonucleoside-enhanced CrossLinking and ImmunoPrecipitation (PAR-CLIP) method was recently developed for global identification of RNAs interacting with proteins. The strength of this versatile method results from induction of specific T to C transitions at sites of interaction. However, current analytical tools do not distinguish between non-experimentally and experimentally induced transitions. Furthermore, geometric properties at potential binding sites are not taken into account. To surmount these shortcomings, we developed a two-step algorithm consisting of a non-parametric two-component mixture model and a wavelet-based peak calling procedure. Our algorithm can reduce the number of false positives up to 24% thereby identifying high confidence interaction sites. We successfully employed this approach in conjunction with a modified PAR-CLIP protocol to study the functional role of nuclear Moloney leukemia virus 10, a putative RNA helicase interacting with Argonaute2 and Polycomb. Our method, available as the R package wavClusteR , is generally applicable to any substitution-based inference problem in genomics.ISSN:1362-4962ISSN:0301-561

    An efficient strategy for TALEN-mediated genome engineering in Drosophila

    Get PDF
    In reverse genetics, a gene’s function is elucidated through targeted modifications in the coding region or associated DNA cis -regulatory elements. To this purpose, recently developed customizable transcription activator-like effector nucleases (TALENs) have proven an invaluable tool, allowing introduction of double-strand breaks at predetermined sites in the genome. Here we describe a practical and efficient method for the targeted genome engineering in Drosophila . We demonstrate TALEN-mediated targeted gene integration and efficient identification of mutant flies using a traceable marker phenotype. Furthermore, we developed an easy TALEN assembly (easyT) method relying on simultaneous reactions of DNA Bae I digestion and ligation, enabling construction of complete TALENs from a monomer unit library in a single day. Taken together, our strategy with easyT and TALEN-plasmid microinjection simplifies mutant generation and enables isolation of desired mutant fly lines in the F 1 generation.ISSN:1362-4962ISSN:0301-561

    A Deterministic Analysis of Genome Integrity during Neoplastic Growth in <i>Drosophila</i>

    Get PDF
    <div><p>The development of cancer has been associated with the gradual acquisition of genetic alterations leading to a progressive increase in malignancy. In various cancer types this process is enabled and accelerated by genome instability. While genome sequencing-based analysis of tumor genomes becomes increasingly a standard procedure in human cancer research, the potential necessity of genome instability for tumorigenesis in <i>Drosophila melanogaster</i> has, to our knowledge, never been determined at DNA sequence level. Therefore, we induced formation of tumors by depletion of the <i>Drosophila</i> tumor suppressor Polyhomeotic and subjected them to genome sequencing. To achieve a highly resolved delineation of the genome structure we developed the Deterministic Structural Variation Detection (DSVD) algorithm, which identifies structural variations (SVs) with high accuracy and at single base resolution. The employment of long overlapping paired-end reads enables DSVD to perform a deterministic, i.e. fragment size distribution independent, identification of a large size spectrum of SVs. Application of DSVD and other algorithms to our sequencing data reveals substantial genetic variation with respect to the reference genome reflecting temporal separation of the reference and laboratory strains. The majority of SVs, constituted by small insertions/deletions, is potentially caused by erroneous replication or transposition of mobile elements. Nevertheless, the tumor did not depict a loss of genome integrity compared to the control. Altogether, our results demonstrate that genome stability is not affected inevitably during sustained tumor growth in <i>Drosophila</i> implying that tumorigenesis, in this model organism, can occur irrespective of genome instability and the accumulation of specific genetic alterations.</p></div

    Depletion of <i>polyhomeotic (ph)</i> induces neoplastic tumors.

    No full text
    <p>A) Ph expression in the normal wing disc of third instar larvae (left) expressing the reporter <i>en-GAL4 </i> UAS-<i>myr-RFP</i>, UAS-<i>Dicer2</i>, <i>NRE:EGFP</i> (right). B) Downregulation of Ph induced by the RNAi reporter observed in the posterior compartment. Posterior compartment (red RFP) shows overproliferation phenotype (from <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0087090#pone.0087090-Saj1" target="_blank">[26]</a>). C) Schematic outline of the experimental workflow. Eggs of the same genotype were developed at different temperatures. The tumor suppressor <i>ph</i> is specifically depleted (RNAi) at 25°C within the posterior compartment (p, RFP signal in red) of wing imaginal discs, leading to the formation of large tumors (upper). To allow for the accumulation of SVs, tumors are transplanted for a period of four weeks. At 18°C depletion of Ph is not sufficient to drive tumorigenesis (lower) and corresponding wing imaginal discs were used as control. Genomic DNA from both samples was isolated and subjected to paired-end sequencing. Notch-dependent EGFP expression (green) marks the boundary of the dorsal and ventral compartments. The white dashed outline marks the remnant anterior compartment (a) with normal Notch signaling along the dorsal/ventral boundary, while the grey dashed outline labels the haltere disc (hd).</p
    corecore