15 research outputs found

    Maximal correlation between flavor entanglement and oscillation damping due to localization effects

    Full text link
    Localization effects and quantum decoherence driven by the mass-eigenstate wave packet propagation are shown to support a statistical correlation between quantum entanglement and damped oscillations in the scenario of three-flavor quantum mixing for neutrinos. Once the mass-eigenstates that support flavor oscillations are identified as three-{\em qubit} modes, a decoherence scale can be extracted from correlation quantifiers, namely the entanglement of formation and the logarithmic negativity. Such a decoherence scale is compared with the coherence length of damped oscillations. Damping signatures exhibited by flavor transition probabilities as an effective averaging of the oscillating terms are then explained as owing to loss of entanglement between mass modes involved in the relativistic propagation.Comment: 13 pages, 03 figure

    Bright and dark states of light: The quantum origin of classical interference

    Full text link
    Classical theory asserts that several electromagnetic waves cannot interact with matter if they interfere destructively to zero, whereas quantum mechanics predicts a nontrivial light-matter dynamics even when the average electric field vanishes. Here we show that in quantum optics classical interference emerges from collective bright and dark states of light, \textit{i.e.}, entangled superpositions of multi-mode photon-number states. This makes it possible to explain wave interference using the particle description of light and the superposition principle for linear systems.Comment: 5 pages, 1 figure

    Reservoir engineering with arbitrary temperatures for spin systems and quantum thermal machine with maximum efficiency

    Full text link
    Abstract Reservoir engineering is an important tool for quantum information science and quantum thermodynamics since it allows for preparing and/or protecting special quantum states of single or multipartite systems or to investigate fundamental questions of the thermodynamics as quantum thermal machines and their efficiencies. Here we employ this technique to engineer reservoirs with arbitrary (effective) negative and positive temperatures for a single spin system. To this end, we firstly engineer an appropriate interaction between a qubit system, a carbon nuclear spin, to a fermionic reservoir, in our case a large number of hydrogen nuclear spins that acts as the spins bath. This carbon-hydrogen structure is present in a polycrystalline adamantane, which was used in our experimental setup. The required interaction engineering is achieved by applying a specific sequence of radio-frequency pulses using Nuclear Magnetic Resonance (NMR), while the temperature of the bath can be controlled by appropriate preparation of the initial hydrogen nuclear spin state, being the predicted results in very good agreement with the experimental data. As an application we implemented a single qubit quantum thermal machine which operates at a single reservoir at effective negative temperature whose efficiency is always 100%, independent of the unitary transformation performed on the qubit system, as long as it changes the qubit state.Comment: 7 pages, 6 figure

    Phononic bright and dark states: Investigating multi-mode light-matter interactions with a single trapped ion

    Full text link
    Interference underpins some of the most practical and impactful properties of both the classical and quantum worlds. In this work we experimentally investigate a new formalism to describe interference effects, based on collective states which have enhanced or suppressed coupling to a two-level system. We employ a single trapped ion, whose electronic state is coupled to two of the ion's motional modes in order to simulate a multi-mode light-matter interaction. We observe the emergence of phononic bright and dark states for both a single phonon and a superposition of coherent states and demonstrate that a view of interference which is based solely on their decomposition in the collective basis is able to intuitively describe their coupling to a single atom. This work also marks the first time that multi-mode bright and dark states have been formed with the bounded motion of a single trapped ion and we highlight the potential of the methods discussed here for use in quantum information processing.Comment: 7 + 5 pages, 6 + 4 figure

    Generating long-lived entangled states with free-space collective spontaneous emission

    No full text
    International audienceConsidering the paradigmatic case of a cloud of two-level atoms interacting through common vacuum modes, we show how cooperative spontaneous emission, which is at the origin of superradiance, leads the system to long-lived entangled states at late times. These subradiant modes are characterized by an entanglement between all particles, independently of their geometrical configuration. While there is no threshold on the interaction strength necessary to entangle all particles, stronger interactions lead to longer-lived entanglement

    Steady-state entanglement generation for non-degenerate qubits

    Full text link
    We propose a scheme to dissipatively produce steady-state entanglement in a two-qubit system, via an interaction with a bosonic mode. The system is driven into a stationary entangled state, while we compensate the mode dissipation by injecting energy via a coherent pump field. We also present a scheme which allows us to adiabatically transfer all the population to the desired entangled state. The dynamics leading to the entangled state in these schemes can be understood in analogy with electromagnetically induced transparency (EIT) and stimulated Raman adiabatic passage (STIRAP), respectively.Comment: 7 pages, 4 figure
    corecore