7 research outputs found

    Dynamic Proteomics: a database for dynamics and localizations of endogenous fluorescently-tagged proteins in living human cells

    Get PDF
    Recent advances allow tracking the levels and locations of a thousand proteins in individual living human cells over time using a library of annotated reporter cell clones (LARC). This library was created by Cohen et al. to study the proteome dynamics of a human lung carcinoma cell-line treated with an anti-cancer drug. Here, we report the Dynamic Proteomics database for the proteins studied by Cohen et al. Each cell-line clone in LARC has a protein tagged with yellow fluorescent protein, expressed from its endogenous chromosomal location, under its natural regulation. The Dynamic Proteomics interface facilitates searches for genes of interest, downloads of protein fluorescent movies and alignments of dynamics following drug addition. Each protein in the database is displayed with its annotation, cDNA sequence, fluorescent images and movies obtained by the time-lapse microscopy. The protein dynamics in the database represents a quantitative trace of the protein fluorescence levels in nucleus and cytoplasm produced by image analysis of movies over time. Furthermore, a sequence analysis provides a search and comparison of up to 50 input DNA sequences with all cDNAs in the library. The raw movies may be useful as a benchmark for developing image analysis tools for individual-cell dynamic-proteomics. The database is available at http://www.dynamicproteomics.net/

    Generation of double-labeled reporter cell lines for studying co-dynamics of endogenous proteins in individual human cells.

    Get PDF
    Understanding the dynamic relationship between components of a system or pathway at the individual cell level is a current challenge. To address this, we developed an approach that allows simultaneous tracking of several endogenous proteins of choice within individual living human cells. The approach is based on fluorescent tagging of proteins at their native locus by directed gene targeting. A fluorescent tag-encoding DNA is introduced as a new exon into the intronic region of the gene of interest, resulting in expression of a full-length fluorescently tagged protein. We used this approach to establish human cell lines simultaneously expressing two components of a major antioxidant defense system, thioredoxin 1 (Trx) and thioredoxin reductase 1 (TrxR1), labeled with CFP and YFP, respectively. We find that the distributions of both proteins between nuclear and cytoplasmic compartments were highly variable between cells. However, the two proteins did not vary independently of each other: protein levels of Trx and TrxR1 in both the whole cell and the nucleus were substantially correlated. We further find that in response to a stress-inducing drug (CPT), both Trx and TrxR1 accumulated in the nuclei in a manner that was highly temporally correlated. This accumulation considerably reduced cell-to-cell variability in nuclear content of both proteins, suggesting a uniform response of the thioredoxin system to stress. These results indicate that Trx and TrxR1 act in concert in response to stress in regard to both time course and variability. Thus, our approach provides an efficient tool for studying dynamic relationship between components of systems of interest at a single-cell level
    corecore