4,146 research outputs found

    Multicanonical Spin Glass Simulations

    Full text link
    We report a Monte Carlo simulation of the 2D2D Edwards-Anderson spin glass model within the recently introduced multicanonical ensemble. Replica on lattices of size L2L^2 up to L=48L=48 are investigated. Once a true groundstate is found, we are able to give a lower bound on the number of statistically independent groundstates sampled. Temperature dependence of the energy, entropy and other quantities of interest are easily calculable. In particular we report the groundstate results. Computations involving the spin glass order parameter are more tedious. Our data indicate that the large LL increase of the ergodicity time is reduced to an approximately V3V^3 power law. Altogether the results suggest that the multicanonical ensemble improves the situation of simulations for spin glasses and other systems which have to cope with similar problems of conflicting constraints.Comment: 24 page

    Multicanonical Study of the 3D Ising Spin Glass

    Full text link
    We simulated the Edwards-Anderson Ising spin glass model in three dimensions via the recently proposed multicanonical ensemble. Physical quantities such as energy density, specific heat and entropy are evaluated at all temperatures. We studied their finite size scaling, as well as the zero temperature limit to explore the ground state properties.Comment: FSU-SCRI-92-121; 7 pages; sorry, no figures include

    h-deformation of Gr(2)

    Full text link
    The hh-deformation of functions on the Grassmann matrix group Gr(2)Gr(2) is presented via a contraction of Grq(2)Gr_q(2). As an interesting point, we have seen that, in the case of the hh-deformation, both R-matrices of GLh(2)GL_h(2) and Grh(2)Gr_h(2) are the same

    A New Approach to Spin Glass Simulations

    Full text link
    We present a recursive procedure to calculate the parameters of the recently introduced multicanonical ensemble and explore the approach for spin glasses. Temperature dependence of the energy, the entropy and other physical quantities are easily calculable and we report results for the zero temperature limit. Our data provide evidence that the large LL increase of the ergodicity time is greatly improved. The multicanonical ensemble seems to open new horizons for simulations of spin glasses and other systems which have to cope with conflicting constraints

    Project PROMETHEUS: Design and Construction of a Radio Frequency Quadrupole at TAEK

    Full text link
    The PROMETHEUS Project is ongoing for the design and development of a 4-vane radio frequency quadrupole (RFQ) together with its H+ ion source, a low energy beam transport (LEBT) line and diagnostics section. The main goal of the project is to achieve the acceleration of the low energy ions up to 1.5 MeV by an RFQ (352 MHz) shorter than 2 meter. A plasma ion source is being developed to produce a 20 keV, 1 mA H+ beam. Simulation results for ion source, transmission and beam dynamics are presented together with analytical studies performed with newly developed RFQ design code DEMIRCI. Simulation results shows that a beam transmission 99% could be achieved at 1.7 m downstream reaching an energy of 1.5 MeV. As the first phase an Aluminum RFQ prototype, the so-called cold model, will be built for low power RF characterization. In this contribution the status of the project, design considerations, simulation results, the various diagnostics techniques and RFQ manufacturing issues are discussed.Comment: 4 pages, 8 figures, Proceedings of the 2nd International Beam Instrumentation Conference 2013 (IBIC'13), 16-19 Sep 2013, WEPC02, p. 65

    Grundstate Properties of the 3D Ising Spin Glass

    Full text link
    We study zero--temperature properties of the 3d Edwards--Anderson Ising spin glass on finite lattices up to size 12312^3. Using multicanonical sampling we generate large numbers of groundstate configurations in thermal equilibrium. Finite size scaling with a zero--temperature scaling exponent y=0.74±0.12y = 0.74 \pm 0.12 describes the data well. Alternatively, a descriptions in terms of Parisi mean field behaviour is still possible. The two scenarios give significantly different predictions on lattices of size ≥123\ge 12^3.Comment: LATEX 9pages,figures upon request ,SCRI-9

    Fluid Flows of Mixed Regimes in Porous Media

    Full text link
    In porous media, there are three known regimes of fluid flows, namely, pre-Darcy, Darcy and post-Darcy. Because of their different natures, these are usually treated separately in literature. To study complex flows when all three regimes may be present in different portions of a same domain, we use a single equation of motion to unify them. Several scenarios and models are then considered for slightly compressible fluids. A nonlinear parabolic equation for the pressure is derived, which is degenerate when the pressure gradient is either small or large. We estimate the pressure and its gradient for all time in terms of initial and boundary data. We also obtain their particular bounds for large time which depend on the asymptotic behavior of the boundary data but not on the initial one. Moreover, the continuous dependence of the solutions on initial and boundary data, and the structural stability for the equation are established.Comment: 33 page

    Radiation Testing of Electronics for the CMS Endcap Muon System

    Get PDF
    The electronics used in the data readout and triggering system for the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) particle accelerator at CERN are exposed to high radiation levels. This radiation can cause permanent damage to the electronic circuitry, as well as temporary effects such as data corruption induced by Single Event Upsets. Once the High Luminosity LHC (HL-LHC) accelerator upgrades are completed it will have five times higher instantaneous luminosity than LHC, allowing for detection of rare physics processes, new particles and interactions. Tests have been performed to determine the effects of radiation on the electronic components to be used for the Endcap Muon electronics project currently being designed for installation in the CMS experiment in 2013. During these tests the digital components on the test boards were operating with active data readout while being irradiated with 55 MeV protons. In reactor tests, components were exposed to 30 years equivalent levels of neutron radiation expected at the HL-LHC. The highest total ionizing dose (TID) for the muon system is expected at the inner-most portion of the CMS detector, with 8900 rad over ten years. Our results show that Commercial Off-The-Shelf (COTS) components selected for the new electronics will operate reliably in the CMS radiation environment

    Z3_3-graded differential geometry of quantum plane

    Full text link
    In this work, the Z3_3-graded differential geometry of the quantum plane is constructed. The corresponding quantum Lie algebra and its Hopf algebra structure are obtained. The dual algebra, i.e. universal enveloping algebra of the quantum plane is explicitly constructed and an isomorphism between the quantum Lie algebra and the dual algebra is given.Comment: 17 page
    • …
    corecore