189 research outputs found

    Proof in dynamic geometry contexts

    No full text
    Proof lies at the heart of mathematics yet we know from research in mathematics education that proof is an elusive concept for many mathematics students. The question that this paper raises is whether the introduction of dynamic geometry software will improve the situation – or whether it make the transition from informal to formal proof in mathematics even harder. Through discussion of research into innovative teaching approaches with computers the paper examines whether such approaches can assist pupils in developing a conceptual framework for proof, and in appropriating proof as a means to illuminate geometrical ideas

    Next steps in implementing Kaput's research programme

    Get PDF
    We explore some key constructs and research themes initiated by Jim Kaput, and attempt to illuminate them further with reference to our own research. These 'design principles' focus on the evolution of digital representations since the early nineties, and we attempt to take forward our collective understanding of the cognitive and cultural affordances they offer. There are two main organising ideas for the paper. The first centres around Kaput's notion of outsourcing of processing power, and explores the implications of this for mathematical learning. We argue that a key component for design is to create visible, transparent views of outsourcing, a transparency without which there may be as many pitfalls as opportunities for mathematical learning. The second organising idea is that of communication, a key notion for Kaput, and the importance of designing for communication in ways that recognise the mutual influence of tools for communication and for mathematical expression

    The technological mediation of mathematics and its learning

    Get PDF
    This paper examines the extent to which mathematical knowledge, and its related pedagogy, is inextricably linked to the tools – physical, virtual, cultural – in which it is expressed. Our goal is to focus on a few exemplars of computational tools, and to describe with some illustrative examples, how mathematical meanings are shaped by their use. We begin with an appraisal of the role of digital technologies, and our rationale for focusing on them. We present four categories of digital tool-use that distinguish their differing potential to shape mathematical cognition. The four categories are: i. dynamic and graphical tools, ii. tools that outsource processing power, iii. new representational infrastructures, and iv. the implications of highbandwidth connectivity on the nature of mathematics activity. In conclusion, we draw out the implications of this analysis for mathematical epistemology and the mathematical meanings students develop. We also underline the central importance of design, both of the tools themselves and the activities in which they are embedded

    Engaging with mathematics in the digital age

    Get PDF
    There is widespread acceptance that mathematics is important, for an individual and for society. However there are still those who disagree arguing that the subject is boring and irrelevant. It is therefore crucial that mathematics teaching strives to engage all learners at all levels, without of course sacrificing the rigour and ‘essence’ of the subject. In this talk, I will argue that one way to achieve both rigour and broader access to mathematics lies with using appropriately designed digital technology. I will illustrate my argument with examples from research and practice

    Changing patterns of transition from school to university mathematics

    Get PDF
    There has been widespread concern over the lack of preparedness of students making the transition from school to university mathematics and the changing profile of entrants to mathematical subjects in higher education has been well documented. In this paper, using documentary analysis and data from an informal case study, we argue the antecedents of this changed profile in the general shift across all subjects to a more utilitarian higher education, alongside the more specific changes in A-level mathematics provision which have been largely market driven. Our conclusions suggest that, ironically, changes put in place to make mathematics more widely useful may result in it losing just those features that make it marketable

    Exploring the mathematics of motion through construction and collaboration

    Get PDF
    In this paper we give a detailed account of the design principles and construction of activities designed for learning about the relationships between position, velocity and acceleration, and corresponding kinematics graphs. Our approach is model-based, that is, it focuses attention on the idea that students constructed their own models – in the form of programs – to formalise and thus extend their existing knowledge. In these activities, students controlled the movement of objects in a programming environment, recording the motion data and plotting corresponding position-time and velocity-time graphs. They shared their findings on a specially-designed web-based collaboration system, and posted cross-site challenges to which others could react. We present learning episodes that provide evidence of students making discoveries about the relationships between different representations of motion. We conjecture that these discoveries arose from their activity in building models of motion and their participation in classroom and online communities

    On the integration of digital technologies into mathematics classrooms

    Get PDF
    Trouche‘s (2003) presentation at the Third Computer Algebra in Mathematics Education Symposium focused on the notions of instrumental genesis and of orchestration: the former concerning the mutual transformation of learner and artefact in the course of constructing knowledge with technology; the latter concerning the problem of integrating technology into classroom practice. At the Symposium, there was considerable discussion of the idea of situated abstraction, which the current authors have been developing over the last decade. In this paper, we summarise the theory of instrumental genesis and attempt to link it with situated abstraction. We then seek to broaden Trouche‘s discussion of orchestration to elaborate the role of artefacts in the process, and describe how the notion of situated abstraction could be used to make sense of the evolving mathematical knowledge of a community as well as an individual. We conclude by elaborating the ways in which technological artefacts can provide shared means of mathematical expression, and discuss the need to recognise the diversity of student‘s emergent meanings for mathematics, and the legitimacy of mathematical expression that may be initially divergent from institutionalised mathematics
    • 

    corecore