68 research outputs found
Intraspecific Variation in Nickel Tolerance and Hyperaccumulation among Serpentine and Limestone Populations of Odontarrhena serpyllifolia (Brassicaceae: Alysseae) from the Iberian Peninsula
Odontarrhena serpyllifolia (Desf.) Jord. & Fourr. (=Alyssum serpyllifolium Desf.) occurs in the Iberian Peninsula and adjacent areas on a variety of soils including both limestone and serpentine (ultramafic) substrates. Populations endemic to serpentine are known to hyperaccumulate nickel, and on account of this remarkable phenotype have, at times, been proposed for recognition as taxonomically distinct subspecies or even species. It remains unclear, however, to what extent variation in nickel hyperaccumulation within this taxon merely reflects differences in the substrate, or whether the different populations show local adaptation to their particular habitats. To help clarify the physiological basis of variation in nickel hyperaccumulation among these populations, 3 serpentine accessions and 3 limestone accessions were cultivated hydroponically under common-garden conditions incorporating a range of Ni concentrations, along with 2 closely related non-accumulator species, Clypeola jonthlaspi L. and Alyssum montanum L. As a group, serpentine accessions of O. serpyllifolia were able to tolerate Ni concentrations approximately 10-fold higher than limestone accessions, but a continuous spectrum of Ni tolerance was observed among populations, with the least tolerant serpentine accession not being significantly different from the most tolerant limestone accession. Serpentine accessions maintained relatively constant tissue concentrations of Ca, Mg, K, and Fe across the whole range of Ni exposures, whereas in the limestone accessions, these elements fluctuated widely in response to Ni toxicity. Hyperaccumulation of Ni, defined here as foliar Ni concentrations exceeding 1g kg−1 of dry biomass in plants not showing significant growth reduction, occurred in all accessions of O. serpyllifolia, but the higher Ni tolerance of serpentine accessions allowed them to hyperaccumulate more strongly. Of the reference species, C. jonthlaspi responded similarly to the limestone accessions of O. serpyllifolia, whereas A. montanum displayed by far the lowest degree of Ni tolerance and exhibited low foliar Ni concentrations, which only exceeded 1 g kg−1 in plants showing severe Ni toxicity. The continuous spectrum of physiological responses among these accessions does not lend support to segregation of the serpentine populations of O. serpyllifolia as distinct species. However, the pronounced differences in degrees of Ni tolerance, hyperaccumulation, and elemental homeostasis observed among these accessions under common-garden conditions argues for the existence of population-level adaptation to their local substrates
Does TP53 increase the sensitivity of CA125 in early detection of ovarian cancer?
https://openworks.mdanderson.org/sumexp22/1149/thumbnail.jp
Comparative Transcriptomic Analysis of Primary and Recurrent Ovarian Granulosa Cell Tumors
View full abstracthttps://openworks.mdanderson.org/leading-edge/1027/thumbnail.jp
A Metabolite-Based Liquid Biopsy for Detection of Ovarian Cancer
Serial CA125 and second line transvaginal ultrasound (TVS) screening in the UKCTOCS indicated a shift towards detection of earlier stage ovarian cancer (OvCa), but did not yield a significant mortality reduction. There remains a need to establish additional biomarkers that can complement CA125 for even earlier and at a larger proportion of new cases. Using a cohort of plasma samples from 219 OvCa cases (59 stage I/II and 160 stage III/IV) and 409 female controls and a novel Sensitivity Maximization At A Given Specificity (SMAGS) method, we developed a blood-based metabolite-based test consisting of 7 metabolites together with CA125 for detection of OvCa. At a 98.5% specificity cutpoint, the metabolite test achieved sensitivity of 86.2% for detection of early-stage OvCa and was able to capture 64% of the cases with low CA125 levels (\u3c 35 units/mL). In an independent test consisting of 65 early-stage OvCa cases and 141 female controls, the metabolite panel achieved sensitivity of 73.8% at a 91.4% specificity and captured 13 (44.8%) out of 29 early-stage cases with CA125 levels \u3c 35 units/mL. The metabolite test has utility for ovarian cancer screening, capable of improving upon CA125 for detection of early-stage disease
Enhanced estrogen-induced proliferation in obese rat endometrium.
OBJECTIVE: We tested the hypothesis that the proliferative estrogen effect on the endometrium is enhanced in obese vs lean animals.
STUDY DESIGN: Using Zucker fa/fa obese rats and lean control, we examined endometrial cell proliferation and the expression patterns of certain estrogen-regulated proproliferative and antiproliferative genes after short-term treatment with estradiol.
RESULTS: No significant morphologic/histologic difference was seen between the obese rats and the lean rats. Estrogen-induced proproliferative genes cyclin A and c-Myc messenger RNA expression were significantly higher in the endometrium of obese rats compared with those of the lean control. Expression of the antiproliferative gene p27Kip1 was suppressed by estrogen treatment in both obese and lean rats; however, the decrease was more pronounced in obese rats. Estrogen more strongly induced the antiproliferative genes retinaldehyde dehydrogenases 2 and secreted frizzled-related protein 4 in lean rats but had little or no effect in obese rats.
CONCLUSION: Enhancement of estrogen-induced endometrial proproliferative gene expression and suppression of antiproliferative gene expression was seen in the endometrium of obese vs lean animals
Comparative Tumor Microenvironment Analysis of Primary and Recurrent Ovarian Granulosa Cell Tumors
Adult-type granulosa cell tumors (aGCT) are rare ovarian sex cord tumors with few effective treatments for recurrent disease. The objective of this study was to characterize the tumor microenvironment (TME) of primary and recurrent aGCTs and to identify correlates of disease recurrence. Total RNA sequencing (RNA-seq) was performed on 24 pathologically confirmed, cryopreserved aGCT samples, including 8 primary and 16 recurrent tumors. After read alignment and quality-control filtering, DESeq2 was used to identify differentially expressed genes (DEG) between primary and recurrent tumors. Functional enrichment pathway analysis and gene set enrichment analysis was performed using “clusterProfiler” and “GSVA” R packages. TME composition was investigated through the analysis and integration of multiple published RNA-seq deconvolution algorithms. TME analysis results were externally validated using data from independent previously published RNA-seq datasets. A total of 31 DEGs were identified between primary and recurrent aGCTs. These included genes with known function in hormone signaling such as LHCGR and INSL3 (more abundant in primary tumors) and CYP19A1 (more abundant in recurrent tumors). Gene set enrichment analysis revealed that primarily immune-related and hormone-regulated gene sets expression was increased in recurrent tumors. Integrative TME analysis demonstrated statistically significant depletion of cancer-associated fibroblasts in recurrent tumors. This finding was confirmed in multiple independent datasets
Osteopontin, Macrophage Migration Inhibitory Factor and Anti-Interleukin-8 Autoantibodies Complement CA125 for Detection of Early Stage Ovarian Cancer
Early detection of ovarian cancer promises to reduce mortality. While serum CA125 can detect more than 60% of patients with early stage (I–II) disease, greater sensitivity might be observed with a panel of biomarkers. Ten protein antigens and 12 autoantibody biomarkers were measured in sera from 76 patients with early stage (I–II), 44 patients with late stage (III–IV) ovarian cancer and 200 healthy participants in the normal risk ovarian cancer screening study. A four-biomarker panel (CA125, osteopontin (OPN), macrophage inhibitory factor (MIF), and anti-IL-8 autoantibodies) detected 82% of early stage cancers compared to 65% with CA125 alone. In early stage subjects the area under the receiver operating characteristic curve (AUC) for the panel (0.985) was significantly greater (p < 0.001) than the AUC for CA125 alone (0.885). Assaying an independent validation set of sera from 71 early stage ovarian cancer patients, 45 late stage patients and 131 healthy women, AUC in early stage disease was improved from 0.947 with CA125 alone to 0.974 with the four-biomarker panel (p = 0.015). Consequently, OPN, MIF and IL-8 autoantibodies can be used in combination with CA125 to distinguish ovarian cancer patients from healthy controls with high sensitivity. Osteopontin appears to be a robust biomarker that deserves further evaluation in combination with CA12
Autoantibodies, Antigen-Autoantibody Complexes and Antigens Complement CA125 for Early Detection of Ovarian Cancer
BACKGROUND: Multiple antigens, autoantibodies (AAb), and antigen-autoantibody (Ag-AAb) complexes were compared for their ability to complement CA125 for early detection of ovarian cancer.
METHODS: Twenty six biomarkers were measured in a single panel of sera from women with early stage (I-II) ovarian cancers (n = 64), late stage (III-IV) ovarian cancers (186), benign pelvic masses (200) and from healthy controls (502), and then split randomly (50:50) into a training set to identify the most promising classifier and a validation set to compare its performance to CA125 alone.
RESULTS: Eight biomarkers detected ≥ 8% of early stage cases at 98% specificity. A four-biomarker panel including CA125, HE4, HE4 Ag-AAb and osteopontin detected 75% of early stage cancers in the validation set from among healthy controls compared to 62% with CA125 alone (p = 0.003) at 98% specificity. The same panel increased sensitivity for distinguishing early-stage ovarian cancers from benign pelvic masses by 25% (p = 0.0004) at 95% specificity. From 21 autoantibody candidates, 3 AAb (anti-p53, anti-CTAG1 and annt-Il-8) detected 22% of early stage ovarian cancers, potentially lengthening lead time prior to diagnosis.
CONCLUSION: A four biomarker panel achieved greater sensitivity at the same specificity for early detection of ovarian cancer than CA125 alone
Integrated Multi-Omic Analysis of Low-Grade Ovarian Serous Carcinoma Collected From Short and Long-Term Survivors
BACKGROUND: Low-grade serous ovarian cancer (LGSOC) is a rare disease that occurs more frequently in younger women than those with high-grade disease. The current treatment is suboptimal and a better understanding of the molecular pathogenesis of this disease is required. In this study, we compared the proteogenomic analyses of LGSOCs from short- and long-term survivors (defined as \u3c 40 and \u3e 60 months, respectively). Our goal was to identify novel mutations, proteins, and mRNA transcripts that are dysregulated in LGSOC, particularly in short-term survivors.
METHODS: Initially, targeted sequencing of 409 cancer-related genes was performed on 22 LGSOC and 6 serous borderline ovarian tumor samples. Subsequently, whole-genome sequencing analysis was performed on 14 LGSOC samples (7 long-term survivors and 7 short-term survivors) with matched normal tissue samples. RNA sequencing (RNA-seq), quantitative proteomics, and phosphoproteomic analyses were also performed.
RESULTS: We identified single-nucleotide variants (SNVs) (range: 5688-14,833 per sample), insertion and deletion variants (indels) (range: 880-1065), and regions with copy number variants (CNVs) (range: 62-335) among the 14 LGSOC samples. Among all SNVs and indels, 2637 mutation sites were found in the exonic regions. The allele frequencies of the detected variants were low (median12%). The identified recurrent nonsynonymous missense mutations included KRAS, NRAS, EIF1AX, UBR5, and DNM3 mutations. Mutations in DNM3 and UBR5 have not previously been reported in LGSOC. For the two samples, somatic DNM3 nonsynonymous missense mutations in the exonic region were validated using Sanger sequencing. The third sample contained two missense mutations in the intronic region of DNM3, leading to a frameshift mutation detected in RNA transcripts in the RNA-seq data. Among the 14 LGSOC samples, 7754 proteins and 9733 phosphosites were detected by global proteomic analysis. Some of these proteins and signaling pathways, such as BST1, TBXAS1, MPEG1, HBA1, and phosphorylated ASAP1, are potential therapeutic targets.
CONCLUSIONS: This is the first study to use whole-genome sequencing to detect somatic mutations in LGSOCs with matched normal tissues. We detected and validated novel mutations in DNM3, which were present in 3 of the 14 samples analyzed. Additionally, we identified novel indels, regions with CNVs, dysregulated mRNA, dysregulated proteins, and phosphosites that are more prevalent in short-term survivors. This integrated proteogenomic analysis can guide research into the pathogenesis and treatment of LGSOC
A common X-linked inborn error of carnitine biosynthesis may be a risk factor for nondysmorphic autism
We recently reported a deletion of exon 2 of the trimethyllysine hydroxylase epsilon (TMLHE) gene in a proband with autism. TMLHE maps to the X chromosome and encodes the first enzyme in carnitine biosynthesis, 6-N-trimethyllysine dioxygenase. Deletion of exon 2 of TMLHE causes enzyme deficiency, resulting in increased substrate concentration (6-N-trimethyllysine) and decreased product levels (3-hydroxy-6-N-trimethyllysine and γ-butyrobetaine) in plasma and urine. TMLHE deficiency is common in control males (24 in 8,787 or 1 in 366) and was not significantly increased in frequency in probands from simplex autism families (9 in 2,904 or 1 in 323). However, it was 2.82-fold more frequent in probands from male-male multiplex autism families compared with controls (7 in 909 or 1 in 130; P = 0.023). Additionally, six of seven autistic male siblings of probands in male-male multiplex families had the deletion, suggesting that TMLHE deficiency is a risk factor for autism (metaanalysis Z-score = 2.90 and P = 0.0037), although with low penetrance (2-4%). These data suggest that dysregulation of carnitine metabolism may be important in nondysmorphic autism; that abnormalities of carnitine intake, loss, transport, or synthesis may be important in a larger fraction of nondysmorphic autism cases; and that the carnitine pathway may provide a novel target for therapy or prevention of autism
- …