12 research outputs found

    Inspiratory muscle training and its effect on indices of physiological and perceived stress during incremental walking exercise in normobaric hypoxia

    Get PDF
    This study evaluated the effects of inspiratory muscle training (IMT) on inspiratory muscle fatigue (IMF) and physiological and perceptual responses during trekking-specific exercise. An 8-week IMT program was completed by 21 males (age 32.4 ± 9.61 years, VO2peak 58.8 ± 6.75 mL/kg/min) randomised within matched pairs to either the IMT group (n = 11) or the placebo group [(P), n = 9]. Twice daily, participants completed 30 (IMT) or 60 (P) inspiratory efforts using a Powerbreathe initially set at a resistance of 50% (IMT) or used at 15% (P) of maximal inspiratory pressure (MIP) throughout. A loaded (12.5 kg) 39-minute incremental walking protocol (3–5 km/hour and 1–15% gradient) was completed in normobaric hypoxia (PIO2 = 110 mmHg, 3000 m) before and after training. MIP increased from 164 to 188 cmH2O (18%) and from 161 to 171 cmH2O (6%) in the IMT and P groups (P = 0.02). The 95% CI for IMT showed a significant improvement in MIP (5.21±43.33 cmH2O), but not for P. IMF during exercise (MIP) was*5%, showing no training effect for either IMT or P (P = 0.23). Rating of perceived exertion (RPE) was consistently reduced (*1) throughout exercise following training for IMT, but not for P (P = 0.03). The mean blood lactate concentration during exercise was significantly reduced by 0.26 and 0.15 mmol/L in IMT and P (P = 0.00), with no differences between groups (P = 0.34). Rating of dyspnoea during exercise decreased (*0.4) following IMT but increased (*0.3) following P (P = 0.01). IMT may attenuate the increased physiological and perceived exercise stress experienced during normobaric hypoxia, which may benefit moderate altitude expedition

    Insights into the innate immunity of the Mediterranean mussel Mytilus galloprovincialis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sessile bivalves of the genus <it>Mytilus </it>are suspension feeders relatively tolerant to a wide range of environmental changes, used as sentinels in ecotoxicological investigations and marketed worldwide as seafood. Mortality events caused by infective agents and parasites apparently occur less in mussels than in other bivalves but the molecular basis of such evidence is unknown. The arrangement of Mytibase, interactive catalogue of 7,112 transcripts of <it>M. galloprovincialis</it>, offered us the opportunity to look for gene sequences relevant to the host defences, in particular the innate immunity related genes.</p> <p>Results</p> <p>We have explored and described the Mytibase sequence clusters and singletons having a putative role in recognition, intracellular signalling, and neutralization of potential pathogens in <it>M. galloprovincialis</it>. Automatically assisted searches of protein signatures and manually cured sequence analysis confirmed the molecular diversity of recognition/effector molecules such as the antimicrobial peptides and many carbohydrate binding proteins. Molecular motifs identifying complement C1q, C-type lectins and fibrinogen-like transcripts emerged as the most abundant in the Mytibase collection whereas, conversely, sequence motifs denoting the regulatory cytokine MIF and cytokine-related transcripts represent singular and unexpected findings. Using a cross-search strategy, 1,820 putatively immune-related sequences were selected to design oligonucleotide probes and define a species-specific Immunochip (DNA microarray). The Immunochip performance was tested with hemolymph RNAs from mussels injected with <it>Vibrio splendidus </it>at 3 and 48 hours post-treatment. A total of 143 and 262 differentially expressed genes exemplify the early and late hemocyte response of the <it>Vibrio</it>-challenged mussels, respectively, with AMP trends confirmed by qPCR and clear modulation of interrelated signalling pathways.</p> <p>Conclusions</p> <p>The Mytibase collection is rich in gene transcripts modulated in response to antigenic stimuli and represents an interesting window for looking at the mussel immunome (transcriptomes mediating the mussel response to non-self or abnormal antigens). On this basis, we have defined a new microarray platform, a mussel Immunochip, as a flexible tool for the experimental validation of immune-candidate sequences, and tested its performance on <it>Vibrio</it>-activated mussel hemocytes. The microarray platform and related expression data can be regarded as a step forward in the study of the adaptive response of the <it>Mytilus </it>species to an evolving microbial world.</p

    Improved detection of differentially expressed genes in microarray experiments through multiple scanning and image integration

    No full text
    The variability of results in microarray technology is in part due to the fact that independent scans of a single hybridised microarray give spot images that are not quite the same. To solve this problem and turn it to our advantage, we introduced the approach of multiple scanning and of image integration of microarrays. To this end, we have developed specific software that creates a virtual image that statistically summarises a series of consecutive scans of a microarray. We provide evidence that the use of multiple imaging (i) enhances the detection of differentially expressed genes; (ii) increases the image homogeneity; and (iii) reveals false-positive results such as differentially expressed genes that are detected by a single scan but not confirmed by successive scanning replicates. The increase in the final number of differentially expressed genes detected in a microarray experiment with this approach is remarkable; 50% more for microarrays hybridised with targets labelled by reverse transcriptase, and 200% more for microarrays developed with the tyramide signal amplification (TSA) technique. The results have been confirmed by semi-quantitative RT-PCR tests

    Pattern recognition in gene expression profiling using DNA array: a comparative study of different statistical methods applied to cancer classification

    No full text
    Large-scale parallel measurements of the expression of many thousands genes are now available with high-density array made with collections of cDNA fragments, or oligonucleotide corresponding to different transcripts. These technologies have been applied to cancer investigations since the availability of such a large number of markers makes DNA array a powerful diagnostic tool for tumour and patient classification. Over the last two years, a series of computational tools have been developed for the analysis of different aspects of gene profiling. Our work tries to compare a series of supervised statistical techniques on the basis of their ability to correctly classify different types of tumours. A simulation approach was initially used to control the huge source of variation among and between patients, and to evaluate the ability of algorithms to classify tumours in relation to different types of experimental variables. Different techniques for reduction of data dimension were then added to the discriminant analysis and compared according to their ability to capture the main genetic information. The simulation results have been tested by applying the selected classification algorithms to two experimental microarray datasets of human cancers, and by measuring the correspondent rates of misclassification. Our analyses identify in these datasets a series of genes principally involved in tumour characterization. The functional role of these discriminant transcripts is discussed

    Global DNA methylation profiling uncovers distinct methylation patterns of protocadherin alpha4 in metastatic and non-metastatic rhabdomyosarcoma

    No full text
    Rhabdomyosarcoma (RMS), which can be classified as embryonal RMS (ERMS) and alveolar RMS (ARMS), represents the most frequent soft tissue sarcoma in the pediatric population; the latter shows greater aggressiveness and metastatic potential with respect to the former. Epigenetic alterations in cancer include DNA methylation changes and histone modifications that influence overall gene expression patterns. Different tumor subtypes are characterized by distinct methylation signatures that could facilitate early disease detection and greater prognostic accuracy

    Altered gene transcription in human cells treated with Ludox\uae silica nanoparticles.

    No full text
    Silica (SiO2) nanoparticles (NPs) have found extensive applications in industrial manufacturing, biomedical and biotechnological fields. Therefore, the increasing exposure to such ultrafine particles requires studies to characterize their potential cytotoxic effects in order to provide exhaustive information to assess the impact of nanomaterials on human health. The understanding of the biological processes involved in the development and maintenance of a variety of pathologies is improved by genome-wide approaches, and in this context, gene set analysis has emerged as a fundamental tool for the interpretation of the results. In this work we show how the use of a combination of gene-by-gene and gene set analyses can enhance the interpretation of results of in vitro treatment of A549 cells with Ludox® colloidal amorphous silica nanoparticles. By gene-by-gene and gene set analyses, we evidenced a specific cell response in relation to NPs size and elapsed time after treatment, with the smaller NPs (SM30) having higher impact on inflammatory and apoptosis processes than the bigger ones. Apoptotic process appeared to be activated by the up-regulation of the initiator genes TNFa and IL1b and by ATM. Moreover, our analyses evidenced that cell treatment with LudoxÒ silica nanoparticles activated the matrix metalloproteinase genes MMP1, MMP10 and MMP9. The information derived from this study can be informative about the cytotoxicity of Ludox® and other similar colloidal amorphous silica NPs prepared by solution processes

    Gene expression profiling in dysferlinopathies using a dedicated muscle microarray

    No full text
    We have performed expression profiling to define the molecular changes in dysferlinopathy using a novel dedicated microarray platform made with 3 0-end skeletal muscle cDNAs. Eight dysferlinopathy patients, defined by western blot, immunohistochemistry and mutation analysis, were investigated with this technology. In a first experiment RNAs from different limb-girdle muscular dystrophy type 2B patients were pooled and compared with normal muscle RNA to characterize the general transcription pattern of this muscular disorder. Then the expression profiles of patients with different clinical traits were independently obtained and hierarchical clustering was applied to discover patient-specific gene variations. MHC class I genes and genes involved in protein biosynthesis were up-regulated in relation to muscle histopathological features. Conversely, the expression of genes codifying the sarcomeric proteins titin, nebulin and telethonin was down-regulated. Neither calpain-3 nor caveolin, a sarcolemmal protein interacting with dysferlin, was consistently reduced. There was a major up-regulation of proteins interacting with calcium, namely S100 calcium-binding proteins and sarcolipin, a sarcoplasmic calcium regulator
    corecore