4 research outputs found
Influence of Semiquantitative [<sup>18</sup>F]FDG PET and Hematological Parameters on Survival in HNSCC Patients Using Neural Network Analysis
The aim of this study is to assess the influence of semiquantitative PET-derived parameters as well as hematological parameters in overall survival in HNSCC patients using neural network analysis. Retrospective analysis was performed on 106 previously untreated HNSCC patients. Several PET-derived parameters (SUVmax, SUVmean, TotalSUV, MTV, TLG, TLRmax, TLRmean, TLRTLG, and HI) for primary tumor and lymph node with highest activity were assessed. Additionally, hematological parameters (LEU, LEU%, NEU, NEU%, MON, MON%, PLT, PLT%, NRL, and LMR) were also assessed. Patients were divided according to the diagnosis into the good and bad group. The data were evaluated using an artificial neural network (Neural Analyzer version 2.9.5) and conventional statistic. Statistically significant differences in PET-derived parameters in 5-year survival rate between group of patients with worse prognosis and good prognosis were shown in primary tumor SUVmax (10.0 vs. 7.7; p = 0.040), SUVmean (5.4 vs. 4.4; p = 0.047), MTV (23.2 vs. 14.5; p = 0.010), and TLG (155.0 vs. 87.5; p = 0.05), and mean liver TLG (27.8 vs. 30.4; p = 0.031), TLRmax (3.8 vs. 2.6; p = 0.019), TLRmean (2.8 vs. 1.9; p = 0.018), and in TLRTLG (5.6 vs. 2.3; p = 0.042). From hematological parameters, only LMR showed significant differences (2.5 vs. 3.2; p = 0.009). Final neural network showed that for ages above 60, primary tumors SUVmax, TotalSUV, MTV, TLG, TLRmax, and TLRmean over (9.7, 2255, 20.6, 145, 3.6, 2.6, respectively) are associated with worse survival. Our study shows that the neural network could serve as a supplement to PET-derived parameters and is helpful in finding prognostic parameters for overall survival in HNSCC