23 research outputs found

    The heat-pipe resembling action of boiling bubbles in endovenous laser ablation

    Get PDF
    Endovenous laser ablation (EVLA) produces boiling bubbles emerging from pores within the hot fiber tip and traveling over a distal length of about 20 mm before condensing. This evaporation-condensation mechanism makes the vein act like a heat pipe, where very efficient heat transport maintains a constant temperature, the saturation temperature of 100°C, over the volume where these non-condensing bubbles exist. During EVLA the above-mentioned observations indicate that a venous cylindrical volume with a length of about 20 mm is kept at 100°C. Pullback velocities of a few mm/s then cause at least the upper part of the treated vein wall to remain close to 100°C for a time sufficient to cause irreversible injury. In conclusion, we propose that the mechanism of action of boiling bubbles during EVLA is an efficient heat-pipe resembling way of heating of the vein wall

    A new method of measuring two-phase mass flow rates in a venturi

    No full text
    Metering of the individual flow rates of gas and liquid in a multicomponent flow is of great importance for the oil industry. A convenient, nonintrusive way of measuring these is the registration and analysis of pressure drops over parts of a venturi. Commercially available venturi-based measuring equipment is costly because it also measures the void fraction. This paper presents a method to deduce the individual mass flow rates of air and water from pressure drop ratios and fluctuations in pressure drops. Not one but two pressure drops are used and not only time-averaged values of pressure drops are utilized. As a proof-of-principle, prediction results for a horizontal and vertical venturi are compared with measurements for void fractions up to 80. Residual errors are quantified and the effect of variation of equipment and of slip correlation is shown to be negligible. At relatively low cost a good predictive capacity of individual mass flow rates is obtained

    Irreversible electroporation: just another form of thermal therapy?

    Get PDF
    Irreversible electroporation (IRE) is (virtually) always called non-thermal despite many reports showing that significant Joule heating occurs. Our first aim is to validate with mathematical simulations that IRE as currently practiced has a non-negligible thermal response. Our second aim is to present a method that allows simple temperature estimation to aid IRE treatment planning. We derived an approximate analytical solution of the bio-heat equation for multiple 2-needle IRE pulses in an electrically conducting medium, with and without a blood vessel, and incorporated published observations that an electric pulse increases the medium's electric conductance. IRE simulation in prostate-resembling tissue shows thermal lesions with 67-92°C temperatures, which match the positions of the coagulative necrotic lesions seen in an experimental study. Simulation of IRE around a blood vessel when blood flow removes the heated blood between pulses confirms clinical observations that the perivascular tissue is thermally injured without affecting vascular patency. The demonstration that significant Joule heating surrounds current multiple-pulsed IRE practice may contribute to future in-depth discussions on this thermal issue. This is an important subject because it has long been under-exposed in literature. Its awareness pleads for preventing IRE from calling "non-thermal" in future publications, in order to provide IRE-users with the most accurate information possible. The prospect of thermal treatment planning as outlined in this paper likely aids to the important further successful dissemination of IRE in interventional medicine. Prostate 75:332-335, 2015. © 2014 The Authors. The Prostate Published by Wiley Periodicals, In

    Endovenous laser ablation (EVLA): a review of mechanisms, modeling outcomes, and issues for debate

    Get PDF
    Endovenous laser ablation (EVLA) is a commonly used and very effective minimally invasive therapy to manage leg varicosities. Yet, and despite a clinical history of 16 years, no international consensus on a best treatment protocol has been reached so far. Evidence presented in this paper supports the opinion that insufficient knowledge of the underlying physics amongst frequent users could explain this shortcoming. In this review, we will examine the possible modes of action of EVLA, hoping that better understanding of EVLA-related physics stimulates critical appraisal of claims made concerning the efficacy of EVLA devices, and may advance identifying a best possible treatment protocol. Finally, physical arguments are presented to debate on long-standing, but often unfounded, clinical opinions and habits. This includes issues such as (1) the importance of laser power versus the lack of clinical relevance of laser energy (Joule) as used in Joule per centimeter vein length, i.e., in linear endovenous energy density (LEED), and Joule per square centimeter vein wall area, (2) the predicted effectiveness of a higher power and faster pullback velocity, (3) the irrelevance of whether laser light is absorbed by hemoglobin or water, and (4) the effectiveness of reducing the vein diameter during EVLA therap

    Some controversies in endovenous laser ablation of varicose veins addressed by optical-thermal mathematical modeling

    No full text
    Minimally invasive treatment of varicose veins by endovenous laser ablation (EVLA) becomes more and more popular. However, despite significant research efforts performed during the last years, there is still a lack of agreement regarding EVLA mechanisms and therapeutic strategies. The aim of this article is to address some of these controversies by utilizing optical-thermal mathematical modeling. Our model combines Mordon's light absorption-based optical-thermal model with the thermal consequences of the thin carbonized blood layer on the laser fiber tip that is heated up to temperatures of around 1,000 °C due to the absorption of about 45% of the laser light. Computations were made in MATLAB. Laser wavelengths included were 810, 840, 940, 980, 1,064, 1,320, 1,470, and 1,950 nm. We addressed (a) the effect of direct light absorption by the vein wall on temperature behavior, comparing computations by using normal and zero wall absorption; (b) the prediction of the influence of wavelength on the temperature behavior; (c) the effect of the hot carbonized blood layer surrounding the fiber tip on temperature behavior, comparing wall temperatures from using a hot fiber tip and one kept at room temperature; (d) the effect of blood emptying the vein, simulated by reducing the inside vein diameter from 3 down to 0.8 mm; (e) the contribution of absorbed light energy to the increase in total energy at the inner vein wall in the time period where the highest inner wall temperature was reached; (f) the effect of laser power and pullback velocity on wall temperature of a 2-mm inner diameter vein, at a power/velocity ratio of 30 J/cm at 1,470 nm; (g) a comparison of model outcomes and clinical findings of EVLA procedures at 810 nm, 11 W, and 1.25 mm/s, and 1,470 nm, 6 W, and 1 mm/s, respectively. Interestingly, our model predicts that the dominating mechanism for heating up the vein wall is not direct absorption of the laser light by the vein wall but, rather, heat flow to the vein wall and its subsequent temperature increase from two independent heat sources. The first is the exceedingly hot carbonized layer covering the fiber tip; the second is the hot blood surrounding the fiber tip, heated up by direct absorption of the laser light. Both mechanisms are about equally effective for all laser wavelengths. Therefore, our model concurs the finding of Vuylsteke and Mordon (Ann Vasc Surg 26:424-433, 2012) of more circumferential vein wall injury in veins (nearly) devoid of blood, but it does not support their proposed explanation of direct light absorption by the vein wall. Furthermore, EVLA appears to be a more efficient therapy by the combination of higher laser power and faster pullback velocity than by the inverse combination. Our findings suggest that 1,470 nm achieves the highest EVLA efficacy compared to the shorter wavelengths at all vein diameters considered. However, 1,950 nm of EVLA is more efficacious than 1,470 nm albeit only at very small inner vein diameters (smaller than about 1 mm, i.e., veins quite devoid of blood). Our model confirms the efficacy of both clinical procedures at 810 and 1,470 nm. In conclusion, our model simulations suggest that direct light absorption by the vein wall is relatively unimportant, despite being the supposed mechanism of action of EVLA that drove the introduction of new lasers with different wavelengths. Consequently, the presumed advantage of wavelengths targeting water rather than hemoglobin is flawed. Finally, the model predicts that EVLA therapy may be optimized by using 1,470 nm of laser light, emptying of the vein before treatment, and combining a higher laser power with a greater fiber tip pullback velocit

    Mathematical modeling of the thermal effects of irreversible electroporation for in vitro, in vivo, and clinical use: a systematic review

    No full text
    Introduction: Irreversible electroporation (IRE) is a relatively new ablation method for the treatment of unresectable cancers. Although the main mechanism of IRE is electric permeabilization of cell membranes, the question is to what extent thermal effects of IRE contribute to tissue ablation. Aim: This systematic review reviews the mathematical models used to numerically simulate the heat-generating effects of IRE, and uses the obtained data to assess the degree of mild-hyperthermic (temperatures between 40 °C and 50 °C) and thermally ablative (TA) effects (temperatures exceeding 50 °C) caused by IRE within the IRE-treated region (IRE-TR). Methods: A systematic search was performed in medical and technical databases for original studies reporting on numerical simulations of IRE. Data on used equations, study design, tissue models, maximum temperature increase, and surface areas of IRE-TR, mild-hyperthermic, and ablative temperatures were extracted. Results: Several identified models, including Laplace equation for calculation of electric field distribution, Pennes Bioheat Equation for heat transfer, and Arrhenius model for thermal damage, were applied on various electrode and tissue models. Median duration of combined mild-hyperthermic and TA effects is 20% of the treatment time. Based on the included studies, mild-hyperthermic temperatures occurred in 30% and temperatures ≥50 °C in 5% of the IRE-TR. Conclusions: Simulation results in this review show that significant mild-hyperthermic effects occur in a large part of the IRE-TR, and direct thermal ablation in comparatively small regions. Future studies should aim to optimize clinical IRE protocols, maintaining a maximum irreversible permeabilized region with minimal TA effects

    Comment to: Månsson C, Nilsson A, Karlson B-M. Severe complications with irreversible electroporation of the pancreas in the presence of a metallic stent: a warning of a procedure that never should be performed. Acta Radiologica Short Reports 2014;3(11):1-3

    No full text
    Entidade ou indivíduo que estabelece uma mediação entre o produtor e o consumidor de bens culturais. A tendência é para o intermediário cultural ser um conhecedor e um especialista. A sua actividade insere-se na cadeia de valor (promotor, marketeer, agente comercial) ou fora dela (marchant, crítico de arte ou de cultura, fazedor de opinião). Se a cadeia de valor das indústrias culturais e criativas eliminou etapas e profissionais, o intermediário cultural é um mediador cada vez mais important..

    The Influence of a Metal Stent on the Distribution of Thermal Energy during Irreversible Electroporation.

    Get PDF
    PURPOSE:Irreversible electroporation (IRE) uses short duration, high-voltage electrical pulses to induce cell death via nanoscale defects resulting from altered transmembrane potential. The technique is gaining interest for ablations in unresectable pancreatic and hepatobiliary cancer. Metal stents are often used for palliative biliary drainage in these patients, but are currently seen as an absolute contraindication for IRE due to the perceived risk of direct heating of the metal and its surroundings. This study investigates the thermal and tissue viability changes due to a metal stent during IRE. METHODS:IRE was performed in a homogeneous tissue model (polyacrylamide gel), without and with a metal stent placed perpendicular and parallel to the electrodes, delivering 90 and 270 pulses (15-35 A, 90 μsec, 1.5 cm active tip exposure, 1.5 cm interelectrode distance, 1000-1500 V/cm, 90 pulses/min), and in-vivo in a porcine liver (4 ablations). Temperature changes were measured with an infrared thermal camera and with fiber-optic probes. Tissue viability after in-vivo IRE was investigated macroscopically using 5-triphenyltetrazolium chloride (TTC) vitality staining. RESULTS:In the gel, direct stent-heating was not observed. Contrarily, the presence of a stent between the electrodes caused a higher increase in median temperature near the electrodes (23.2 vs 13.3°C [90 pulses]; p = 0.021, and 33.1 vs 24.8°C [270 pulses]; p = 0.242). In-vivo, no temperature difference was observed for ablations with and without a stent. Tissue examination showed white coagulation 1mm around the electrodes only. A rim of vital tissue remained around the stent, whereas ablation without stent resulted in complete tissue avitality. CONCLUSION:IRE in the vicinity of a metal stent does not cause notable direct heating of the metal, but results in higher temperatures around the electrodes and remnant viable tissue. Future studies should determine for which clinical indications IRE in the presence of metal stents is safe and effective
    corecore