9 research outputs found

    "A Buzz in the Meadow" by Dave Goulson. 2014. [book review]

    No full text

    Entomology

    No full text
    xviii+729hlm.;25c

    Conspecific Eggs and Bertha Armyworm, Mamestra configurata

    No full text

    Oviposition Preferences of Bertha Armyworm Mamestra configurata

    No full text

    Identification of the Mamestra configurata (Lepidoptera: Noctuidae) peritrophic matrix proteins and enzymes involved in peritrophic matrix chitin metabolism

    No full text
    The peritrophic matrix (PM) is essential for insect digestive system physiology as it protects the midgut epithelium from damage by food particles, pathogens, and toxins. The PM is also an attractive target for development of new pest control strategies due to its per os accessibility. To understand how the PM performs these functions, the molecular architecture of the PM was examined using genomic and proteomic approaches in Mamestra configurata (Lepidoptera: Noctuidae), a major pest of cruciferous oilseed crops in North America. Liquid chromatography-tandem mass spectrometry analyses of the PM identified 82 proteins classified as: (i) peritrophins, including a new class with a CBDIII domain; (ii) enzymes involved in chitin modification (chitin deacetylases), digestion (serine proteases, aminopeptidases, carboxypeptidases, lipases and \u3b1-amylase) or other reactions (\u3b2-1,3-glucanase, alkaline phosphatase, dsRNase, astacin, pantetheinase); (iii) a heterogenous group consisting of polycalin, REPATs, serpin, C-Type lectin and Lsti99/Lsti201 and 3 novel proteins without known orthologs. The genes encoding PM proteins were expressed predominantly in the midgut. cDNAs encoding chitin synthase-2 (McCHS-2), chitinase (McCHI), and \u3b2-N-acetylglucosaminidase (McNAG) enzymes, involved in PM chitin metabolism, were also identified. McCHS-2 expression was specific to the midgut indicating that it is responsible for chitin synthesis in the PM, the only chitinous material in the midgut. In contrast, the genes encoding the chitinolytic enzymes were expressed in multiple tissues. McCHS-2, McCHI, and McNAG were expressed in the midgut of feeding larvae, and NAG activity was present in the PM. This information was used to generate an updated model of the lepidopteran PM architecture.Peer reviewed: YesNRC publication: Ye

    Yellow Mealworm Larvae (Tenebrio molitor) Fed Mycotoxin-Contaminated Wheat—A Possible Safe, Sustainable Protein Source for Animal Feed?

    No full text
    The aim of this study was to determine the potential for accumulation of deoxynivalenol (DON) in yellow mealworm larvae (Tenebrio molitor) reared on high DON Fusarium-infected wheat and investigate the effects on production, survival and nutritional traits. Wheat containing 200 μg/kg DON was used as the control diet. A different source of wheat was sorted into six fractions and mixed to obtain low (2000 μg/kg), medium (10,000 μg/kg) and high (12,000 μg/kg) levels of DON. Each diet was replicated five times with 300 or 200 mealworms per replicate for the feeding and breeding trials, respectively. Trial termination occurred when the first two pupae were observed (32–34 days). There was no difference in the concentrations of DON detected in the larvae between diets that ranged from 122 ± 19.3 to 136 ± 40.5 μg/kg (p = 0.88). Excretion of DON was 131, 324, 230 and 742 μg/kg for control, low, medium and high, respectively. Nutritional analysis of larvae showed maximum crude protein of 52% and crude fat of 36%. Ash, fiber, chitin, fatty-acids and amino-acid content were consistent across diets. Survival was greater than 96% for all life stages and average daily gain ranged from 1.9 ± 0.1 to 2.1 ± 0.1 mg/day per mealworm. Larvae accumulated low levels of DON from Fusarium-infected wheat diets suggesting contaminated wheat could be used to produce a sustainable, safe protein source

    Mating precedes selective immune priming which is maintained throughout bumblebee queen diapause

    No full text
    corecore