575 research outputs found
Zoo of quantum phases and excitations of cold bosonic atoms in optical lattices
Quantum phases and phase transitions of weakly- to strongly-interacting
bosonic atoms in deep to shallow optical lattices are described by a {\it
single multi-orbital mean-field approach in real space}. For weakly-interacting
bosons in 1D, the critical value of the superfluid to Mott insulator (MI)
transition found is in excellent agreement with {\it many-body} treatments of
the Bose-Hubbard model. For strongly-interacting bosons, (i) additional MI
phases appear, for which two (or more) atoms residing in {\it each site}
undergo a Tonks-Girardeau-like transition and localize and (ii) on-site
excitation becomes the excitation lowest in energy. Experimental implications
are discussed.Comment: 12 pages, 3 figure
Ultrafast interatomic electronic decay in multiply excited clusters
An ultrafast mechanism belonging to the family of interatomic Coulombic decay
(ICD) phenomena is proposed. When two excited species are present, an ultrafast
energy transfer can take place bringing one of them to its ground state and
ionizing the other one. It is shown that if large homoatomic clusters are
exposed to an ultrashort and intense laser pulse whose photon energy is in
resonance with an excitation transition of the cluster constituents, the large
majority of ions will be produced by this ICD mechanism rather than by
two-photon ionization. A related collective-ICD process that is operative in
heteroatomic systems is also discussed.Comment: 4 pages, 3 figure
Radiation Generated by Charge Migration Following Ionization
Electronic many-body effects alone can be the driving force for an ultrafast
migration of a positive charge created upon ionization of molecular systems.
Here we show that this purely electronic phenomenon generates a characteristic
IR radiation. The situation when the initial ionic wave packet is produced by a
sudden removal of an electron is also studied. It is shown that in this case a
much stronger UV emission is generated. This emission appears as an ultrafast
response of the remaining electrons to the perturbation caused by the sudden
ionization and as such is a universal phenomenon to be expected in every
multielectron system.Comment: 5 pages, 4 figure
Quantum dynamics of attractive versus repulsive bosonic Josephson junctions: Bose-Hubbard and full-Hamiltonian results
The quantum dynamics of one-dimensional bosonic Josephson junctions with
attractive and repulsive interparticle interactions is studied using the
Bose-Hubbard model and by numerically-exact computations of the full many-body
Hamiltonian. A symmetry present in the Bose-Hubbard Hamiltonian dictates an
equivalence between the evolution in time of attractive and repulsive Josephson
junctions with attractive and repulsive interactions of equal magnitude. The
full many-body Hamiltonian does not possess this symmetry and consequently the
dynamics of the attractive and repulsive junctions are different.Comment: 9 pages, 2 figure
Formation of dynamical Schr\"odinger cats in low-dimensional ultracold attractive Bose gases
Dynamical Schr\"odinger cats can be formed when a one-dimensional attractive
Bose-gas cloud is scattered off a potential barrier. Once formed, these objects
are stable in time. The phenomenon and its mechanism -- transformation of
kinetic energy to internal energy of the scattered atomic cloud -- are obtained
by solving the time-dependent many-boson Schr\"odinger equation. Implications
are discussed.Comment: 11 pages, 3 figure
- …