15 research outputs found

    Genomic features of lung-recurrent hormone-sensitive prostate cancer

    No full text
    PURPOSE Pulmonary involvement is rare in metastatic hormone-sensitive prostate cancer (mHSPC) that recurs after treatment for localized disease. Guidelines recommend intensive systemic therapy, similar to patients with liver metastases, but some lung-recurrent mHSPC may have good outcomes. Genomic features of lung metastases may clarify disease aggression, but are poorly understood since lung biopsy is rarely performed. We present a comparative assessment of genomic drivers and heterogeneity in metachronous prostate tumors and lung metastases. METHODS We leveraged a prospective functional imaging study of 208 biochemically recurrent prostate cancers to identify 10 patients with lung-recurrent mHSPC. Histologic diagnosis was attained via thoracic surgery or fine-needle lung biopsy. We retrieved clinical data and performed multiregion sampling of primary tumors and metastases. Targeted and/or whole-exome sequencing was applied to 46 primary and 32 metastatic foci. RESULTS Unusually for mHSPC, all patients remained alive despite a median follow-up of 11.5 years. Several patients experienced long-term freedom from systemic treatment. The genomic landscape of lung-recurrent mHSPC was typical of curable prostate cancer with frequent PTEN, SPOP, and chromosome 8p alterations, and there were no deleterious TP53 and DNA damage repair gene mutations that characterize aggressive prostate cancer. Despite a long median time to recurrence (76.8 months), copy number alterations and clonal mutations were highly conserved between metastatic and primary foci, consistent with intrapatient homogeneity and limited genomic evolution. CONCLUSION In this retrospective hypothesis-generating study, we observed indolent genomic etiology in selected lung-recurrent mHSPC, cautioning against grouping these patients together with liver or bone-predominant mHSPC. Although our data do not generalize to all patients with lung metastases, the results encourage prospective efforts to stratify lung-recurrent mHSPC by genomic features. (C) 2022 by American Society of Clinical Oncolog

    Genomic features of lung-recurrent hormone-senstive prostate cancer

    No full text
    PURPOSE Pulmonary involvement is rare in metastatic hormone-sensitive prostate cancer (mHSPC) that recurs after treatment for localized disease. Guidelines recommend intensive systemic therapy, similar to patients with liver metastases, but some lung-recurrent mHSPC may have good outcomes. Genomic features of lung metastases may clarify disease aggression, but are poorly understood since lung biopsy is rarely performed. We present a comparative assessment of genomic drivers and heterogeneity in metachronous prostate tumors and lung metastases. METHODS We leveraged a prospective functional imaging study of 208 biochemically recurrent prostate cancers to identify 10 patients with lung-recurrent mHSPC. Histologic diagnosis was attained via thoracic surgery or fine-needle lung biopsy. We retrieved clinical data and performed multiregion sampling of primary tumors and metastases. Targeted and/or whole-exome sequencing was applied to 46 primary and 32 metastatic foci. RESULTS Unusually for mHSPC, all patients remained alive despite a median follow-up of 11.5 years. Several patients experienced long-term freedom from systemic treatment. The genomic landscape of lung-recurrent mHSPC was typical of curable prostate cancer with frequent PTEN, SPOP, and chromosome 8p alterations, and there were no deleterious TP53 and DNA damage repair gene mutations that characterize aggressive prostate cancer. Despite a long median time to recurrence (76.8 months), copy number alterations and clonal mutations were highly conserved between metastatic and primary foci, consistent with intrapatient homogeneity and limited genomic evolution. CONCLUSION In this retrospective hypothesis-generating study, we observed indolent genomic etiology in selected lung-recurrent mHSPC, cautioning against grouping these patients together with liver or bone-predominant mHSPC. Although our data do not generalize to all patients with lung metastases, the results encourage prospective efforts to stratify lung-recurrent mHSPC by genomic features. (C) 2022 by American Society of Clinical Oncolog

    Multiregion sampling of de novo metastatic prostate cancer reveals complex polyclonality and augments clinical genotyping

    No full text
    De novo metastatic prostate cancer is highly aggressive, but the paucity of routinely collected tissue has hindered genomic stratification and precision oncology. Here, we leveraged a rare study of surgical intervention in 43 de novo metastatic prostate cancers to assess somatic genotypes across 607 synchronous primary and metastatic tissue regions plus circulating tumor DNA. Intra-prostate heterogeneity was pervasive and impacted clinically relevant genes, resulting in discordant genotypes between select primary restricted regions and synchronous metastases. Additional complexity was driven by polyclonal metastatic seeding from phylogenetically related primary populations. When simulating clinical practice relying on a single tissue region, genomic heterogeneity plus variable tumor fraction across samples caused inaccurate genotyping of dominant disease; however, pooling extracted DNA from multiple biopsy cores before sequencing can rescue misassigned somatic genotypes. Our results define the relationship between synchronous treatment-sensitive primary and metastatic lesions in men with de novo metastatic prostate cancer and provide a framework for implementing genomics-guided patient management. Warner et al. analyze tumor tissue and ctDNA from patients with de novo metastatic castrate-sensitive prostate cancer and find high intratumoral heterogeneity, suggesting that genomic profiling of multiple samples per patient is needed for accurate outcome prediction

    Dangerous liaisons: the ecology of private interest and common good

    Get PDF
    Multiple sclerosis (MS) is an inflammatory disease of the central nervous system characterized by myelin loss and neuronal dysfunction. Although the majority of patients do not present familial aggregation, Mendelian forms have been described. We performed whole-exome sequencing analysis in 132 patients from 34 multi-incident families, which nominated likely pathogenic variants for MS in 12 genes of the innate immune system that regulate the transcription and activation of inflammatory mediators. Rare missense or nonsense variants were identified in genes of the fibrinolysis and complement pathways (PLAU, MASP1, C2), inflammasome assembly (NLRP12), Wnt signaling (UBR2, CTNNA3, NFATC2, RNF213), nuclear receptor complexes (NCOA3), and cation channels and exchangers (KCNG4, SLC24A6, SLC8B1). These genes suggest a disruption of interconnected immunological and pro-inflammatory pathways as the initial event in the pathophysiology of familial MS, and provide the molecular and biological rationale for the chronic inflammation, demyelination and neurodegeneration observed in MS patients. Author summary Although the majority of patients diagnosed with multiple sclerosis do not have a family history of disease, 13% report having a close relative also diagnosed with multiple sclerosis. In these families, the cause of multiple sclerosis can be largely attributed to a single genetic variant that is transmitted through generations. In this study we analyzed DNA from 132 patients from 34 families, resulting in the identification of 12 rare genetic variants that are largely responsible for the onset of multiple sclerosis in these families. These variants are located in genes implicated in specific immunological pathways, and suggest the biological mechanisms that trigger the onset of multiple sclerosis. These genes and variants provide the means for the generation of cellular and animal models of human disease, and highlight biological targets for the development of novel treatments.This research was undertaken thanks to funding from the Canada Research Chair program (950-228408), Michael Smith Foundation for Health Research (16827), the Canadian Institutes of Health Research (MOP-137051), the Vancouver Coastal Health Research Institute, the Milan & Maureen Ilich Foundation (11-32095000), and the Vancouver Foundation (ADV14-1597) to CVG. Additional funds were provided by "Red Espanola de Esclerosis Multiple (REEM)" (grant to KV was RD12/0032/0013; RETICS, ISCIII), Project FIS PI13/0879 Grant RETICS-REEM RD07/0060/0019; Ministerio de Economia y Competitividad-FEDER SAF2016-80595-C2-1-P to AA and FM, Junta de Andalucia-FEDER to FM, and the Ricerca Finalizzata of the Italian Ministry of Health (RF-201102350347). EU, LL, LEP, and PUR are members of the Spanish Network of Multiple Sclerosis REEM RD16/0015/0010, supported by Institute of Health "Carlos III" of the Ministry of Economy and Competitiveness (grants cofunded by European Regional Development Fund). LL holds a Nicolas Monardes contract (C-0014-2015) from the Andalusian Health Ministry. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
    corecore