97 research outputs found
The neuroepithelial basement membrane serves as a boundary and a substrate for neuron migration in the zebrafish hindbrain
<p>Abstract</p> <p>Background</p> <p>The facial branchiomotor neurons of cranial nerve VII undergo a stereotyped tangential migration in the zebrafish hindbrain that provides an ideal system for examining the complex interactions between neurons and their environment that result in directed migration. Several studies have shown the importance of the planar cell polarity pathway in facial branchiomotor neuron migration but the role of apical-basal polarity has not been determined. Here we examine the role of the PAR-aPKC complex in forming the basal structures that guide facial branchiomotor neurons on an appropriate migratory path.</p> <p>Results</p> <p>High resolution timelapse imaging reveals that facial branchiomotor neurons begin their migration by moving slowly ventrally and posteriorly with their centrosomes oriented medially and then, upon contact with the Laminin-containing basement membrane at the rhombomere 4-rhombomere 5 boundary, speed up and reorient their centrosomes on the anterior-posterior axis. Disruption of the PAR-aPKC complex members aPKCλ, aPKCζ, and Pard6gb results in an ectopic ventral migration in which facial branchiomotor neurons escape from the hindbrain through holes in the Laminin-containing basement membrane. Mosaic analysis reveals that the requirement for aPKC is cell-nonautonomous, indicating that it is likely required in the surrounding polarized neuroepithelium rather than in facial motor neurons themselves. Ventral facial motor neuron ectopia can be phenocopied by mutation of <it>lamininα1</it>, suggesting that it is defects in maintenance of the laminin-containing basement membrane that are the likely cause of ventral mismigration in aPKCλ+ζ double morphants.</p> <p>Conclusions</p> <p>Our results suggest that the laminin-containing ventral basement membrane, dependent on the activity of the PAR-aPKC complex in the hindbrain neuroepithelium, is both a substrate for migration and a boundary that constrains facial branchiomotor neurons to the appropriate migratory path.</p
A High-Throughput Method For Zebrafish Sperm Cryopreservation and In Vitro Fertilization
This is a method for zebrafish sperm cryopreservation that is an adaptation of the Harvey method (Harvey et al., 1982). We have introduced two changes to the original protocol that both streamline the procedure and increase sample uniformity. First, we normalize all sperm volumes using freezing media that does not contain the cryoprotectant. Second, cryopreserved sperm are stored in cryovials instead of capillary tubes. The rates of sperm freezing and thawing (δ°C/time) are probably the two most critical variables to control in this procedure. For this reason, do not substitute different tubes for those specified. Working in teams of 2 it is possible to freeze the sperm of 100 males per team in ~2 hrs. Sperm cryopreserved using this protocol has an average of 25% fertility (measured as the number of viable embryos generated in an in vitro fertilization divided by the total number of eggs fertilized) and this percent fertility is stable over many years
Walk This Way: Moving neurons communicate with surrounding cells
The planar cell polarity (PCP) pathway is a cell-contact mediated mechanism for transmitting polarity information between neighboring cells. PCP "core components" (Vangl, Fz, Pk, Dsh, and Celsr) are essential for a number of cell migratory events including the posterior migration of facial branchiomotor neurons (FBMNs) in the plane of the hindbrain neuroepithelium in zebrafish and mice. While the mechanism by which PCP signaling polarizes static epithelial cells is well understood, how PCP signaling controls highly dynamic processes like neuronal migration remains an important outstanding question given that PCP components have been implicated in a range of directed cell movements, particularly during vertebrate development. Here, by systematically disrupting PCP signaling in a rhombomere-restricted manner we show that PCP signaling is required both within FBMNs and the hindbrain rhombomere 4 environment at the time when they initiate their migration. Correspondingly, we demonstrate planar polarized localization of PCP core components Vangl2 and Fzd3a in the hindbrain neuroepithelium, and transient localization of Vangl2 at the tips of retracting FBMN filopodia. Using high-resolution timelapse imaging of FBMNs in genetic chimeras we uncover opposing cell-autonomous and non-cell-autonomous functions for Fzd3a and Vangl2 in regulating FBMN protrusive activity. Within FBMNs, Fzd3a is required to stabilize filopodia while Vangl2 has an antagonistic, destabilizing role. However, in the migratory environment Fzd3a acts to destabilize FBMN filopodia while Vangl2 has a stabilizing role. Together, our findings suggest a model in which PCP signaling between the planar polarized neuroepithelial environment and FBMNs directs migration by the selective stabilization of FBMN filopodia
EphA4 and EfnB2a maintain rhombomere coherence by independently regulating intercalation of progenitor cells in the zebrafish neural keel
AbstractDuring vertebrate development, the hindbrain is transiently segmented into 7 distinct rhombomeres (r). Hindbrain segmentation takes place within the context of the complex morphogenesis required for neurulation, which in zebrafish involves a characteristic cross-midline division that distributes progenitor cells bilaterally in the forming neural tube. The Eph receptor tyrosine kinase EphA4 and the membrane-bound Ephrin (Efn) ligand EfnB2a, which are expressed in complementary segments in the early hindbrain, are required for rhombomere boundary formation. We showed previously that EphA4 promotes cell–cell affinity within r3 and r5, and proposed that preferential adhesion within rhombomeres contributes to boundary formation. Here we show that EfnB2a is similarly required in r4 for normal cell affinity and that EphA4 and EfnB2a regulate cell affinity independently within their respective rhombomeres. Live imaging of cell sorting in mosaic embryos shows that both proteins function during cross-midline cell divisions in the hindbrain neural keel. Consistent with this, mosaic EfnB2a over-expression causes widespread cell sorting and disrupts hindbrain organization, but only if induced at or before neural keel stage. We propose a model in which Eph and Efn-dependent cell affinity within rhombomeres serve to maintain rhombomere organization during the potentially disruptive process of teleost neurulation
Guidelines for morpholino use in zebrafish
The zebrafish (Danio rerio) has emerged as a powerful model to study vertebrate development and disease. Its short generation time makes it amenable to genetic manipulation and analysis, and its small size and high fecundity make it especially well suited for large-scale forward genetic and chemical screens. Fast-developing zebrafish embryos are transparent, facilitating live imaging of a variety of developmental processes in wild-type and mutant animals. ...
This brief document provides an updated set of guidelines regarding morpholino use in zebrafish that we anticipate will be of value for experimentalists as well as journal and grant reviewers, and decision makers
Zebrafish Neural Tube Morphogenesis Requires Scribble-Dependent Oriented Cell Divisions
How control of subcellular events in single cells determines
morphogenesis on the scale of the tissue is largely unresolved.
The stereotyped cross-midline mitoses of progenitors
in the zebrafish neural keel [1–4] provide a unique
experimental paradigm for defining the role and control of
single-cell orientation for tissue-level morphogenesis
in vivo. We show here that the coordinated orientation of
individual progenitor cell division in the neural keel is the
cellular determinant required for morphogenesis into a
neural tube epithelium with a single straight lumen. We
find that Scribble is required for oriented cell division and
that its function in this process is independent of canonical
apicobasal and planar polarity pathways. We identify a role
for Scribble in controlling clustering of α-catenin foci in
dividing progenitors. Loss of either Scrib or N-cadherin
results in abnormally oriented mitoses, reduced cross-midline
cell divisions, and similar neural tube defects. We
propose that Scribble-dependent nascent cell-cell adhesion
clusters between neuroepithelial progenitors contribute to
define orientation of their cell division. Finally, our data
demonstrate that while oriented mitoses of individual cells
determine neural tube architecture, the tissue can in turn
feed back on its constituent cells to define their polarization
and cell division orientation to ensure robust tissue
morphogenesis
Wnt-Dependent Epithelial Transitions Drive Pharyngeal Pouch Formation
The pharyngeal pouches, which form by budding of the foregut endoderm, are essential for segmentation of the vertebrate face. To date, the cellular mechanism and segmental nature of such budding have remained elusive. Here, we find that Wnt11r and Wnt4a from the head mesoderm and ectoderm, respectively, play distinct roles in the segmental formation of pouches in zebrafish. Time-lapse microscopy, combined with mutant and tissue-specific transgenic experiments, reveal requirements of Wnt signaling in two phases of endodermal epithelial transitions. Initially, Wnt11r and Rac1 destabilize the endodermal epithelium to promote the lateral movement of pouch-forming cells. Next, Wnt4a and Cdc42 signaling induce the rearrangement of maturing pouch cells into bilayers through junctional localization of the Alcama immunoglobulin-domain protein, which functions to restabilize adherens junctions. We propose that this dynamic control of epithelial morphology by Wnt signaling may be a common theme for the budding of organ anlagen from the endoderm
Retinal regeneration in adult zebrafish requires regulation of TGFβ signaling
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/99623/1/glia22549.pd
Pbx homeodomain proteins pattern both the zebrafish retina and tectum
<p>Abstract</p> <p>Background</p> <p><it>Pbx </it>genes encode TALE class homeodomain transcription factors that pattern the developing neural tube, pancreas, and blood. Within the hindbrain, Pbx cooperates with Hox proteins to regulate rhombomere segment identity. Pbx cooperates with Eng to regulate midbrain-hindbrain boundary maintenance, and with MyoD to control fast muscle cell differentiation. Although previous results have demonstrated that Pbx is required for proper eye size, functions in regulating retinal cell identity and patterning have not yet been examined.</p> <p>Results</p> <p>Analysis of retinal ganglion cell axon pathfinding and outgrowth in <it>pbx2/4 </it>null embryos demonstrated a key role for <it>pbx </it>genes in regulating neural cell behavior. To identify Pbx-dependent genes involved in regulating retino-tectal pathfinding, we conducted a microarray screen for Pbx-dependent transcripts in zebrafish, and detected genes that are specifically expressed in the eye and tectum. A subset of Pbx-dependent retinal transcripts delineate specific domains in the dorso-temporal lobe of the developing retina. Furthermore, we determined that some Pbx-dependent transcripts also require Meis1 and Gdf6a function. Since <it>gdf6a </it>expression is also dependent on Pbx, we propose a model in which Pbx proteins regulate expression of the growth factor <it>gdf6a</it>, which in turn regulates patterning of the dorso-temporal lobe of the retina. This, in concert with aberrant tectal patterning in <it>pbx2/4 </it>null embryos, may lead to the observed defects in RGC outgrowth.</p> <p>Conclusion</p> <p>These data define a novel role for Pbx in patterning the vertebrate retina and tectum in a manner required for proper retinal ganglion cell axon outgrowth.</p
Lysosomal Disorders Drive Susceptibility to Tuberculosis by Compromising Macrophage Migration.
A zebrafish genetic screen for determinants of susceptibility to Mycobacterium marinum identified a hypersusceptible mutant deficient in lysosomal cysteine cathepsins that manifests hallmarks of human lysosomal storage diseases. Under homeostatic conditions, mutant macrophages accumulate undigested lysosomal material, which disrupts endocytic recycling and impairs their migration to, and thus engulfment of, dying cells. This causes a buildup of unengulfed cell debris. During mycobacterial infection, macrophages with lysosomal storage cannot migrate toward infected macrophages undergoing apoptosis in the tuberculous granuloma. The unengulfed apoptotic macrophages undergo secondary necrosis, causing granuloma breakdown and increased mycobacterial growth. Macrophage lysosomal storage similarly impairs migration to newly infecting mycobacteria. This phenotype is recapitulated in human smokers, who are at increased risk for tuberculosis. A majority of their alveolar macrophages exhibit lysosomal accumulations of tobacco smoke particulates and do not migrate to Mycobacterium tuberculosis. The incapacitation of highly microbicidal first-responding macrophages may contribute to smokers' susceptibility to tuberculosis.This work was supported by the National Institutes of Health (R37AI054503, LR, R01NS082567, CBM, 5F30HL110455, RB, 1DP2-OD008614, DMT), the Wellcome Trust (LR), the National Institute of Health Research Cambridge Biomedical Research Centre (LR), the Health Research Board of Ireland (HRA_POR/2013/387, MO’S and CSA/2012/16, JK), and The Royal City of Dublin Hospital Trust (Grant 146, JK).This is the final version of the article. It first appeared from Cell Press via http://dx.doi.org/10.1016/j.cell.2016.02.034
- …