17 research outputs found

    Back to the Future with Ubiquitin

    Get PDF
    AbstractTwo papers published in 1984 by the Varshavsky laboratory revealed that the ubiquitin/proteasome pathway is the principal system for degradation of short-lived proteins in mammalian cells, setting the stage for future demonstrations of this pathway's many regulatory roles. This perspective discusses the impact of those papers and highlights some of the subsequent insights that have led to our current appreciation of the breadth of ubiquitin-mediated signaling

    Ubiquitin: structures, functions, mechanisms

    Get PDF
    AbstractUbiquitin is the founding member of a family of structurally conserved proteins that regulate a host of processes in eukaryotic cells. Ubiquitin and its relatives carry out their functions through covalent attachment to other cellular proteins, thereby changing the stability, localization, or activity of the target protein. This article reviews the basic biochemistry of these protein conjugation reactions, focusing on ubiquitin itself and emphasizing recent insights into mechanism and specificity

    Determinants of proteasome recognition of ornithine decarboxylase, a ubiquitin-independent substrate

    No full text
    Ornithine decarboxylase (ODC) is regulated by its metabolic products through a feedback loop that employs a second protein, antizyme 1 (AZ1). AZ1 accelerates the degradation of ODC by the proteasome. We used purified components to study the structural elements required for proteasomal recognition of this ubiquitin-independent substrate. Our results demonstrate that AZ1 acts on ODC to enhance the association of ODC with the proteasome, not the rate of its processing. Substrate-linked or free polyubiquitin chains compete for AZ1-stimulated degradation of ODC. ODC–AZ1 is therefore recognized by the same element(s) in the proteasome that mediate recognition of polyubiquitin chains. The 37 C-terminal amino acids of ODC harbor an AZ1-modulated recognition determinant. Within the ODC C terminus, three subsites are functionally distinguishable. The five terminal amino acids (ARINV, residues 457–461) collaborate with residue C441 to constitute one recognition element, and AZ1 collaborates with additional constituents of the ODC C terminus to generate a second recognition element

    Binding of polyubiquitin chains to ubiquitin-associated (UBA) domains of HHR23A

    No full text
    Ubiquitin-associated (UBA) domains are small protein domains that occur in the context of larger proteins and are likely to function as inter-and intramolecular communication elements in ubiquitin/polyubiquitin signaling. Although monoubiquitin/UBA complexes are well characterized, much less is known about UBA/polyubiquitin complexes, even though polyubiquitin chains are believed to be biologically relevant ligands of many UBA domain proteins. Here, we report the results of a quantitative study of the interaction of K48-linked polyubiquitin chains with UBA domains of the DNA repair/proteolysis protein HHR23A, using surface plasmon resonance and other approaches. We present evidence that the UBL domain of HHR23A negatively regulates polyubiquitin/UBA interactions and identify leucine 8 of ubiquitin as an important determinant of chain recognition. A striking relationship between binding affinity and chain length suggests that maximum affinity is associated with a conformational feature that is fully formed in chains of nZ4-6 and can be recognized by a single UBA domain of HHR23A. Our findings provide new insights into polyubiquitin chain recognition and set the stage for future structural investigations of UBA/polyubiquitin complexes

    K63-specific deubiquitination by two JAMM/MPN+ complexes: BRISC-associated Brcc36 and proteasomal Poh1

    No full text
    An unusual deubiquitinating (DUB) activity exists in HeLa cell extracts that is highly specific for cleaving K63-linked but not K48-linked polyubiquitin chains. The activity is insensitive to both N-ethyl-maleimide and ubiquitin aldehyde, indicating that it lacks an active site cysteine residue, and gel filtration experiments show that it resides in a high molecular weight (∼600 kDa) complex. Using a biochemical approach, we found that the K63-specific DUB activity co-fractionated through seven chromatographic steps with three multisubunit complexes: the 19S (PA700) portion of the 26S proteasome, the COP9 signalosome (CSN) and a novel complex that includes the JAMM/MPN+ domain-containing protein Brcc36. When we analysed the individual complexes, we found that the activity was intrinsic to PA700 and the Brcc36 isopeptidase complex (BRISC), but that the CSN-associated activity was due entirely to an interaction with Brcc36. None of the complexes cleave K6, K11, K29, K48 or α-linked polyubiquitin, but they do cleave K63 linkages within mixed-linkage chains. Our results suggest that specificity for K63-linked polyubiquitin is a common property of the JAMM/MPN+ family of DUBs
    corecore