22 research outputs found

    B-lymphocyte stimulator/a proliferation-inducing ligand heterotrimers are elevated in the sera of patients with autoimmune disease and are neutralized by atacicept and B-cell maturation antigen-immunoglobulin

    Get PDF
    Abstract Introduction B-lymphocyte stimulator (BLyS) and a proliferation-inducing ligand (APRIL) are members of the tumor necrosis factor (TNF) family that regulate B-cell maturation, survival, and function. They are overexpressed in a variety of autoimmune diseases and reportedly exist in vivo not only as homotrimers, but also as BLyS/APRIL heterotrimers. Methods A proprietary N-terminal trimerization domain was used to produce recombinant BLyS/APRIL heterotrimers. Heterotrimer biologic activity was compared with that of BLyS and APRIL in a 4-hour signaling assay by using transmembrane activator and CAML interactor (TACI)-transfected Jurkat cells and in a 4-day primary human B-cell proliferation assay. A bead-based immunoassay was developed to quantify native heterotrimers in human sera from healthy donors (n = 89) and patients with systemic lupus erythematosus (SLE; n = 89) or rheumatoid arthritis (RA; n = 30). Heterotrimer levels were compared with BLyS and APRIL homotrimer levels in a subset of these samples. Results The recombinant heterotrimers consisted mostly of one BLyS and two APRIL molecules. Heterotrimer signaling did not show any significant difference compared with APRIL in the TACI-Jurkat assay. Heterotrimers were less-potent inducers of B-cell proliferation than were homotrimeric BLyS or APRIL (EC50, nMol/L: BLyS, 0.02; APRIL, 0.17; heterotrimers, 4.06). The soluble receptor fusion proteins atacicept and B-cell maturation antigen (BCMA)-immunoglobulin (Ig) neutralized the activity of BLyS, APRIL, and heterotrimers in both cellular assays, whereas B-cell activating factor belonging to the TNF family receptor (BAFF-R)-Ig neutralized only the activity of BLyS. In human sera, significantly more patients with SLE had detectable BLyS (67% versus 18%; P < 0.0001), APRIL (38% versus 3%; P < 0.0002), and heterotrimer (27% versus 8%; P = 0.0013) levels compared with healthy donors. Significantly more patients with RA had detectable APRIL, but not BLyS or heterotrimer, levels compared with healthy donors (83% versus 3%; P < 0.0001). Heterotrimer levels weakly correlated with BLyS, but not APRIL, levels. Conclusions Recombinant BLyS/APRIL heterotrimers have biologic activity and are inhibited by atacicept and BCMA-Ig, but not by BAFF-R-Ig. A novel immunoassay demonstrated that native BLyS/APRIL heterotrimers, as well as BLyS and APRIL homotrimers, are elevated in patients with autoimmune diseases

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Activation of glutamate-cysteine ligase in lymphocytes

    No full text
    Thesis (Ph. D.)--University of Washington, 2000Lymphocytes are normally quiescent cells that react to receptor-based signals by developing into functional effector cells that orchestrate immune responses. In their resting state, lymphocytes are highly susceptible to oxidative stress, which can alter signal transduction, inhibiting antigen-specific responses. Glutathione (GSH), the major cellular thiol antioxidant, is required for robust lymphocyte responses. Glutamate-cysteine ligase (GLCL; E.C. 6.3.2.2) catalyzes the rate-limiting step in the biosynthesis of GSH. The studies presented herein characterize the induction of GLCL protein in lymphocytes following stimulation of proliferative responses by the mitogen phytohemagglutinin, and by cell surface receptors. Upregulation of GLCL protein is shown to be linked tightly with cell proliferation. In addition, the present work describes changes in GLCL activity following treatments that induce oxidative stress and deplete GSH in lymphocytes, and proposes a novel mechanism for the rapid activation of GLCL. Finally, this report provides evidence that the catalytic subunit of GLCL is cleaved in lymphocytes and other cells in a caspase-3 dependent fashion during programmed cell death. The site of cleavage is identified and results from initial investigations of the function of cleaved GLCL are presented. The studies described herein demonstrate that lymphocytes possess multiple mechanisms for the activation of GLCL and control of GSH biosynthesis

    Rapid Activation of Glutamate Cysteine Ligase following Oxidative Stress*

    No full text
    Glutamate cysteine ligase (GCL) catalyzes the rate-limiting step in the formation of the cellular antioxidant glutathione (GSH). The GCL holoenzyme consists of two separately coded proteins, a catalytic subunit (GCLC) and a modifier subunit (GCLM). Both GCLC and GLCM are controlled transcriptionally by a variety of cellular stimuli, including oxidative stress. This study addresses post-translational control of GCL activity, which increased rapidly in human lymphocytes following oxidative stress. Activation of GCL occurred within minutes of treatment and without any change in GCL protein levels and coincided with an increase in the proportion of GCLC in the holoenzyme form. Likewise, GCLM shifted from the monomeric form to holoenzyme and higher molecular weight species. Normal rat tissues also showed a distribution of monomeric and higher molecular weight forms. Neither GCL activation, nor the formation of holoenzyme, required a covalent intermolecular disulfide bridge between GCLC and GCLM. However, in immunoprecipitation studies, a neutralizing epitope associated with enzymatic activity was protected following cellular oxidative stress. Thus, the N-terminal portion of GCLC may undergo a change that stabilizes the GCL holoenzyme. Our results suggest that a dynamic equilibrium exists between low and high activity forms of GCL and is altered by transient oxidative stress. This provides a mechanism for the rapid post-translational activation of GCL and maintenance of cellular GSH homeostasis

    Interleukin-21 Enhances Rituximab Activity in a Cynomolgus Monkey Model of B Cell Depletion and in Mouse B Cell Lymphoma Models

    No full text
    <div><p>Rituximab, a monoclonal antibody targeting CD20 on B cells, is currently used to treat many subtypes of B cell lymphomas. However, treatment is not curative and response rates are variable. Recombinant interleukin-21 (rIL-21) is a cytokine that enhances immune effector function and affects both primary and transformed B cell differentiation. We hypothesized that the combination of rIL-21 plus rituximab would be a more efficacious treatment for B cell malignancies than rituximab alone. We cultured human and cynomolgus monkey NK cells with rIL-21 and found that their activity was increased and proteins associated with antibody dependent cytotoxicity were up-regulated. Studies in cynomolgus monkeys modeled the effects of rIL-21 on rituximab activity against CD20 B cells. In these studies, rIL-21 activated innate immune effectors, increased ADCC and mobilized B cells into peripheral blood. When rIL-21 was combined with rituximab, deeper and more durable B cell depletion was observed. In another series of experiments, IL-21 was shown to have direct antiproliferative activity against a subset of human lymphoma cell lines, and combination of murine IL-21 with rituximab yielded significant survival benefits over either agent alone in xenogeneic mouse tumor models of disseminated lymphoma. Therefore, our results do suggest that the therapeutic efficacy of rituximab may be improved when used in combination with rIL-21.</p></div

    Murine IL-21 plus rituximab prolongs the survival of SCID mice bearing disseminated lymphoma tumor cells.

    No full text
    <p>(<b>A, B</b>) SCID mice (n = 10/group) were injected i.v. with 10<sup>6</sup> lymphoma cells and then treated with rituximab alone (20 µg on days 3, 7, 11, 15, 19), mIL-21 alone (100 µg days 1–5), or mIL-21 and rituximab. Significant prolongation of survival was observed in the rituximab plus mIL-21 group when compared to rituximab alone (<i>p</i> = 0.0006) in the HS-Sultan model (A). Mice in the Raji model (B) were treated as above, except that mIL-21 was given on days 3–7 and rituximab was given on days 5, 9, 13, 17, and 21. Mice in the combination group survived longer than those treated with rituximab alone (<i>p</i> = 0.0079). (<b>C, D, E</b>) Test of effector cell function with Raji lymphoma models established in SCID or NOD/SCID mice as described above. (C) NOD/SCID mice with impaired NK cells compared to SCID mice. Equivalent survival times were observed for NOD/SCID and SCID mice given rituximab plus rIL-21 (p = 0.012) or rituximab alone. (D) SCID mice injected i.p. with 50 µg of anti-Gr-1 antibody on day -1, 4, 9 and 14 to deplete granulocytes or with PBS (control). Survival was significantly decreased for depleted mice given rituximab plus rIL-21 (p = 0.012) or rituximab alone (p = 0.001) compared with non-depleted mice. (E) SCID mice injected i.v. with liposomes containing clodronate to deplete macrophages or PBS (control). Survival was significantly decreased for depleted mice given rituximab plus rIL-21 treatment (p = 0.0115) or rituximab alone (p = 0.0011) compared with non-depleted mice.</p
    corecore