3 research outputs found

    Internal insulation with integrated radiant wall panels: Innovative Inner Insulation

    Get PDF
    Recently in energy retrofit solutions for the built heritage an increasing interest towards the inner shell insulation is arising. In many cases these solutions borrow techniques and products from the most consolidated solutions of outer shell insulation, often revealing difficulties in execution and control of the results. Inner shell insulation is a developing and improving intervention field, both on technical side and on productive one. In order to hold down work costs and duration and to ensure the required level of energy performance, minimizing installation and setup errors, the research and the market are orienting towards integrated solutions. One of the most interesting features, being checked, is the chance to refurbish inner spaces, whether with residential or tertiary function, without taking occupiers away from the building. The aim of the paper is to describe the purpose, the methodology and the former outcomes of a research project, granted by E.U., aimed to experiment an innovative, integrated and active insulation system applied to the inner side of the building envelope. The I.I.I. (Innovative Inner Insulation) project is an industrial research and experimental development national project, which is conducted by three public research universities and three private technical partners selected between small and medium Italian enterprises. The research project allows to perform specific and systematized interventions in a flexible, integrated and active way according to a cross-curricular method. The system consists of a preassembled dry-laid panel, in which structure, thermal and acoustic insulation, heating plant and possible finish coat are integrated: it is concerned with processing techniques of semifinished and stratified products, as used in cooled transport containers industry. Choosing a radiant wall heating causes a chance to integrate passive insulation with an active energy contribution at low temperature. The paper aims to point out in particular the operating procedures and the outcomes of the experimental phase. As a first step the technical solution was tested in laboratory and at a later stage in two sample-rooms within a pilot construction site in Turin, which will convert one of the buildings facing Piazza Carlo Emanuele II, called “ex Casa Gramsci”, into an hotel. The on-site trial includes the monitoring in sequence of the energy performances of the envelope and final checks through modeling, to develop production and setup process in order to patent the I.I.I. system
    corecore