25 research outputs found
Employment Expectations and Gross Flows by Type of Work Contract
There is growing interest in understanding firms’ temporary and permanent employment practices and how institutional changes shape them. Using data on Spanish establishments, we examine: (a) how employers adjust temporary and permanent job and worker flows to prior employment expectations, and (b) how the 1994 and 1997 labour reforms promoting permanent employment affected establishments’ employment practices. Generally, establishments’ prior employment expectations are realized through changes in all job and worker flows. However, establishments uniquely rely on temporary hires as a buffer to confront diminishing long-run employment expectations. None of the reforms significantly affected establishments’ net temporary or permanent employment flows.http://deepblue.lib.umich.edu/bitstream/2027.42/40032/3/wp646.pd
Deletion of hensin/DMBT1 blocks conversion of β- to α-intercalated cells and induces distal renal tubular acidosis
Acid–base transport in the renal collecting tubule is mediated by two canonical cell types: the β-intercalated cell secretes HCO3 by an apical Cl:HCO3 named pendrin and a basolateral vacuolar (V)-ATPase. Acid secretion is mediated by the α-intercalated cell, which has an apical V-ATPase and a basolateral Cl:HCO3 exchanger (kAE1). We previously suggested that the β-cell converts to the α-cell in response to acid feeding, a process that depended on the secretion and deposition of an extracellular matrix protein termed hensin (DMBT1). Here, we show that deletion of hensin from intercalated cells results in the absence of typical α-intercalated cells and the consequent development of complete distal renal tubular acidosis (dRTA). Essentially all of the intercalated cells in the cortex of the mutant mice are canonical β-type cells, with apical pendrin and basolateral or diffuse/bipolar V-ATPase. In the medulla, however, a previously undescribed cell type has been uncovered, which resembles the cortical β-intercalated cell in ultrastructure, but does not express pendrin. Polymerization and deposition of hensin (in response to acidosis) requires the activation of β1 integrin, and deletion of this gene from the intercalated cell caused a phenotype that was identical to the deletion of hensin itself, supporting its critical role in hensin function. Because previous studies suggested that the conversion of β- to α-intercalated cells is a manifestation of terminal differentiation, the present results demonstrate that this differentiation proceeds from HCO3 secreting to acid secreting phenotypes, a process that requires deposition of hensin in the ECM