33 research outputs found
The Structural Architecture of an Infectious Mammalian Prion Using Electron Cryomicroscopy
The structure of the infectious prion protein (PrPSc), which is responsible for Creutzfeldt-Jakob disease in humans and bovine spongiform encephalopathy, has escaped all attempts at elucidation due to its insolubility and propensity to aggregate. PrPSc replicates by converting the non-infectious, cellular prion protein (PrPC) into the misfolded, infectious conformer through an unknown mechanism. PrPSc and its N-terminally truncated variant, PrP 27-30, aggregate into amorphous aggregates, 2D crystals, and amyloid fibrils. The structure of these infectious conformers is essential to understanding prion replication and the development of structure-based therapeutic interventions. Here we used the repetitive organization inherent to GPI-anchorless PrP 27-30 amyloid fibrils to analyze their structure via electron cryomicroscopy. Fourier-transform analyses of averaged fibril segments indicate a repeating unit of 19.1 Å. 3D reconstructions of these fibrils revealed two distinct protofilaments, and, together with a molecular volume of 18,990 Å3, predicted the height of each PrP 27-30 molecule as ~17.7 Å. Together, the data indicate a four-rung β-solenoid structure as a key feature for the architecture of infectious mammalian prions. Furthermore, they allow to formulate a molecular mechanism for the replication of prions. Knowledge of the prion structure will provide important insights into the self-propagation mechanisms of protein misfolding
Lifestyle and comorbid conditions as risk factors for community-acquired pneumonia in outpatient adults (NEUMO-ES-RISK project)
Introduction: Information about community-acquired pneumonia (CAP) risk in primary care is limited. We assess different lifestyle and comorbid conditions as risk factors (RF) for CAP in adults in primary care. Methods: A retrospective-observational-controlled study was designed. Adult CAP cases diagnosed at primary care in Spain between 2009 and 2013 were retrieved using the National Surveillance System of Primary Care Data (BiFAP). Age-matched and sex-matched controls were selected by incidence density sampling (ratio 2:1). Associations are presented as percentages and OR. Binomial regression models were constructed to avoid bias effects. Results: 51 139 patients and 102 372 controls were compared. Mean age (SD) was 61.4 (19.9) years. RF more significantly linked to CAP were: HIV (OR [95% CI]: 5.21 [4.35 to 6.27]), chronic obstructive pulmonary disease (COPD) (2.97 [2.84 to 3.12]), asthma (2.16 [2.07,2.26]), smoking (1.96 [1.91 to 2.02]) and poor dental hygiene (1.45 [1.41 to 1.49]). Average prevalence of any RF was 82.2% in cases and 69.2% in controls (2.05 [2.00 to 2.10]). CAP rate increased with the accumulation of RF and age: risk associated with 1RF was 1.42 (1.37 to 1.47) in 18-60-year-old individuals vs 1.57 (1.49 to 1.66) in >60 years of age, with 2RF 1.88 (1.80 to 1.97) vs 2.35 (2.23, 2.48) and with >/= 3 RF 3.11 (2.95, 3.30) vs 4.34 (4.13 to 4.57). Discussion: Prevalence of RF in adult CAP in primary care is high. Main RFs associated are HIV, COPD, asthma, smoking and poor dental hygiene. Our risk stacking results could help clinicians identify patients at higher risk of pneumonia
CTCs expression profiling for advanced breast cancer monitoring
The study of circulating tumor cells (CTCs) has a huge clinical interest in advance and metastatic breast cancer patients. However, many approaches are biased by the use of epithelial markers, which underestimate non-epithelial CTCs phenotypes. CTCs enumeration provides valuable prognostic information; however, molecular characterization could be the best option to monitor patients throughout the disease since it may provide more relevant clinical information to the physicians. In this work, we aimed at enumerating and performing a molecular characterization of CTCs from a cohort of 20 patients with metastatic breast cancer (MBC), monitoring the disease at different time points of the therapy, and at progression when it occurred. To this end, we used a CTC negative enrichment protocol that allowed us to recover a higher variety of CTCs phenotypes. With this strategy, we were able to obtain gene expression data from CTCs from all the patients. In addition, we found that high expression levels of PALB2 and MYC were associated with a worse outcome. Interestingly, we identified that CTCs with an EpCAM(high)VIM(low)ALDH1A1(high) signature showed both shorter overall survival (OS) and progression-free survival (PFS), suggesting that CTCs with epithelial-stem features had the most aggressive phenotype
Increased Serum Levels of sCD14 and sCD163 Indicate a Preponderant Role for Monocytes in COVID-19 Immunopathology
Background: Emerging evidence indicates a potential role for monocytes in COVID-19 immunopathology. We investigated two soluble markers of monocyte activation, sCD14 and sCD163, in COVID-19 patients, with the aim of characterizing their potential role in monocyte-macrophage disease immunopathology. To the best of our knowledge, this is the first study of its kind. Methods: Fifty-nine SARS-Cov-2 positive hospitalized patients, classified according to ICU or non-ICU admission requirement, were prospectively recruited and analyzed by ELISA for levels of sCD14 and sCD163, along with other laboratory parameters, and compared to a healthy control group. Results: sCD14 and sCD163 levels were significantly higher among COVID-19 patients, independently of ICU admission requirement, compared to the control group. We found a significant correlation between sCD14 levels and other inflammatory markers, particularly Interleukin-6, in the non-ICU patients group. sCD163 showed a moderate positive correlation with the time lapsed from admission to sampling, independently of severity group. Treatment with corticoids showed an interference with sCD14 levels, whereas hydroxychloroquine and tocilizumab did not. Conclusions: Monocyte-macrophage activation markers are increased and correlate with other inflammatory markers in SARS-Cov-2 infection, in association to hospital admission. These data suggest a preponderant role for monocyte-macrophage activation in the development of immunopathology of COVID-19 patients
Identification of regulatory variants associated with genetic susceptibility to meningococcal disease
Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes
Higher COVID-19 pneumonia risk associated with anti-IFN-α than with anti-IFN-ω auto-Abs in children
We found that 19 (10.4%) of 183 unvaccinated children hospitalized for COVID-19 pneumonia had autoantibodies (auto-Abs) neutralizing type I IFNs (IFN-alpha 2 in 10 patients: IFN-alpha 2 only in three, IFN-alpha 2 plus IFN-omega in five, and IFN-alpha 2, IFN-omega plus IFN-beta in two; IFN-omega only in nine patients). Seven children (3.8%) had Abs neutralizing at least 10 ng/ml of one IFN, whereas the other 12 (6.6%) had Abs neutralizing only 100 pg/ml. The auto-Abs neutralized both unglycosylated and glycosylated IFNs. We also detected auto-Abs neutralizing 100 pg/ml IFN-alpha 2 in 4 of 2,267 uninfected children (0.2%) and auto-Abs neutralizing IFN-omega in 45 children (2%). The odds ratios (ORs) for life-threatening COVID-19 pneumonia were, therefore, higher for auto-Abs neutralizing IFN-alpha 2 only (OR [95% CI] = 67.6 [5.7-9,196.6]) than for auto-Abs neutralizing IFN-. only (OR [95% CI] = 2.6 [1.2-5.3]). ORs were also higher for auto-Abs neutralizing high concentrations (OR [95% CI] = 12.9 [4.6-35.9]) than for those neutralizing low concentrations (OR [95% CI] = 5.5 [3.1-9.6]) of IFN-omega and/or IFN-alpha 2
Identification of regulatory variants associated with genetic susceptibility to meningococcal disease.
Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes
Recommended from our members
Natural resistance to Meningococcal Disease related to CFH loci: Meta-analysis of genome-wide association studies
Meningococcal disease (MD) remains an important infectious cause of life threatening infection in both industrialized and resource poor countries. Genetic factors influence both occurrence and severity of presentation, but the genes responsible are largely unknown. We performed a genome-wide association study (GWAS) examining 5,440,063 SNPs in 422 Spanish MD patients and 910 controls. We then performed a meta-analysis of the Spanish GWAS with GWAS data from the United Kingdom (combined cohorts: 897 cases and 5,613 controls; 4,898,259 SNPs). The meta-analysis identified strong evidence of association (-value≤5×10) in 20 variants located at the gene. SNP rs193053835 showed the most significant protective effect (Odds Ratio (OR)=0.62, 95% confidence interval (C.I.)=0.52–0.73; -value=9.62×10). Five other variants had been previously reported to be associated with susceptibility to MD, including the missense SNP rs1065489 (OR=0.64, 95% C.I.)=0.55–0.76, =3.25×10). Theoretical predictions point to a functional effect of rs1065489, which may be directly responsible for protection against MD. Our study confirms the association of with susceptibility to MD and strengthens the importance of this link in understanding pathogenesis of the disease.This study received support from the Instituto de Salud Carlos III (Proyecto de Investigación en Salud, Acción Estratégica en Salud: proyecto GePEM PI16/01478) (A.S.); Instituto Carlos III (Intensificación de la actividad investigadora) (A.V.); Consellería de Sanidade, Xunta de Galicia (RHI07/2-intensificación actividad investigadora, PS09749 and 10PXIB918184PR), Instituto de Salud Carlos III (Intensificación de la actividad investigadora 2007–2012, PI16/01569), Convenio de colaboración de investigación (Wyeth España-Fundación IDICHUS 2007–2011), Convenio de colaboración de investigación (Novartis España-Fundación IDICHUS 2010–2011), Fondo de Investigación Sanitaria (FIS; PI070069/PI1000540) del plan nacional de I+ D+ I and ‘fondos FEDER’ (F.M.T.). More information at: www. esigem.org. The UK cohort was established with support of the Meningitis Research Foundation (UK), who provide ongoing support, and the European Society for Paediatric Infectious Diseases supported the establishment of the international collaboration. This study makes use of data generated by the Wellcome Trust Case-Control Consortium 2. A full list of the investigators who contributed to the generation of the data is available from www. wtccc.org.uk. Funding for the project was provided by the Wellcome Trust under award 085475. The research leading to these results has received funding from the European Union’s Seventh Framework Programme under EC-GA No. 279185 (EUCLIDS)
Life-threatening infections in children in Europe (the EUCLIDS Project): a prospective cohort study
Background: Sepsis and severe focal infections represent a substantial disease burden in children admitted to hospital. We aimed to understand the burden of disease and outcomes in children with life-threatening bacterial infections in Europe.
Methods: The European Union Childhood Life-threatening Infectious Disease Study (EUCLIDS) was a prospective, multicentre, cohort study done in six countries in Europe. Patients aged 1 month to 18 years with sepsis (or suspected sepsis) or severe focal infections, admitted to 98 participating hospitals in the UK, Austria, Germany, Lithuania, Spain, and the Netherlands were prospectively recruited between July 1, 2012, and Dec 31, 2015. To assess disease burden and outcomes, we collected demographic and clinical data using a secured web-based platform and obtained microbiological data using locally available clinical diagnostic procedures.
Findings: 2844 patients were recruited and included in the analysis. 1512 (53·2%) of 2841 patients were male and median age was 39·1 months (IQR 12·4–93·9). 1229 (43·2%) patients had sepsis and 1615 (56·8%) had severe focal infections. Patients diagnosed with sepsis had a median age of 27·6 months (IQR 9·0–80·2), whereas those diagnosed with severe focal infections had a median age of 46·5 months (15·8–100·4; p<0·0001). Of 2844 patients in the entire cohort, the main clinical syndromes were pneumonia (511 [18·0%] patients), CNS infection (469 [16·5%]), and skin and soft tissue infection (247 [8·7%]). The causal microorganism was identified in 1359 (47·8%) children, with the most prevalent ones being Neisseria meningitidis (in 259 [9·1%] patients), followed by Staphylococcus aureus (in 222 [7·8%]), Streptococcus pneumoniae (in 219 [7·7%]), and group A streptococcus (in 162 [5·7%]). 1070 (37·6%) patients required admission to a paediatric intensive care unit. Of 2469 patients with outcome data, 57 (2·2%) deaths occurred: seven were in patients with severe focal infections and 50 in those with sepsis.
Interpretation: Mortality in children admitted to hospital for sepsis or severe focal infections is low in Europe. The disease burden is mainly in children younger than 5 years and is largely due to vaccine-preventable meningococcal and pneumococcal infections. Despite the availability and application of clinical procedures for microbiological diagnosis, the causative organism remained unidentified in approximately 50% of patients