54 research outputs found

    Radiotherapy delivery during motion

    No full text
    This paper discusses the 3D dosimetric consequences of radiotherapy delivery during two kinds of motion, (i) the respiratory motion by the patient and (ii) the motion by the gantry while rotating around the patient. Respiratory motion primarily compromises treatments in the thorax and abdomen regions. Several strategies to reduce respiratory motion effects have been developed or are under development. The organ motion could for instance be measured and incorporated in the treatment planning, or adapted to by using respiratory gating and tumour-tracking delivery techniques. Gantry motion is involved in various forms of intensity-modulated arc-therapy techniques. The purpose is to increase the modulation by simultaneously varying the MLC positions, the rotation speed of the gantry, and the dose rate during the treatment. The advantage of these techniques is the increased possibility to deliver a high absorbed dose to the target volume while minimizing the dose to normal tissues. However, the dosimetric uncertainties associated with motion, small fields and steep dose gradients, has to be evaluated in detail, and this requires adequate true 3D dose-verification tools

    Breathing-motion induced interplay effects for stereotactic body radiotherapy of liver tumours using flattening-filter free volumetric modulated arc therapy

    No full text
    The purpose of this study was to investigate breathing-motion induced interplay effects for stereotactic body radiotherapy (SBRT) of liver tumours treated with flattening-filter free (FFF) volumetric modulated arc therapy (VMAT). Ten patients previously treated with liver SBRT were included in this study. All patients had four-dimensional computed tomography (4DCT) scans acquired prior to treatment. The 4DCT was sorted into 8-10 phases covering an equal time interval. A FFF VMAT plan was created for one fraction in the mid-ventilation phase for each patient. To generate dose distributions including both interplay effects and dose blurring, a sub-plan was calculated for each phase. The total dose distributions were accumulated to the mid-ventilation phase using the deformed vector fields (DVF) from deformable image registration between the corresponding CT and the mid-ventilation phase CT. A blurred dose distribution, not including interplay effects, was also obtained by distributing the delivery of the whole plan uniformly on all phases, and was similarly accumulated to the mid-ventilation phase. To isolate interplay effects, this blurred dose distribution was subtracted from the total dose distribution with interplay effects. The near minimum dose (D 98%), mean dose (D mean), heterogeneity index (HI), and the near minimum dose difference (ΔD 98%) between the accumulated dose distributions with and without interplay effects were calculated within the gross tumour volume (GTV) for each patient. Comparing the accumulated dose distributions with and without interplay effects, the D 98% decreased for nine of the ten patients and the HI increased for all patients. The median and minimum differences in D 98% were -2.1% and -5.0% (p = 0.006), respectively, and the median HI significantly increased from 6.2% to 12.2% (p = 0.002). The median ΔD 98% was -4.0% (range -7% to -1.5%). In conclusion, statistically significant breathing-induced interplay effects were observed for a single fraction of FFF VMAT liver SBRT, resulting in heterogeneous dose distributions within the GTV

    Dosimetric verification of breathing adapted radiotherapy using polymer gel

    No full text
    In radiation therapy patient movement caused by respiration can be a major challenge to the ambition to deliver a high absorbed dose to the target volume while minimizing the dose to normal tissues. Large respiratory motion requires increased margins, which implies an increased risk of morbidity from late toxicity. It is therefore important to take respiratory motion into account when treating targets in the thorax region. The aim of this study was to investigate the feasibility of using a 3D gel dosimeter for dose verification of breathing adapted radiotherap

    Neutron capture imaging of 10B in tissue specimens

    No full text
    Boron Neutron Capture Therapy (BNCT) is an attractive concept for radiation treatment of malignant tumours. The patients receive a 10B-carrying compound with selective uptake in tumour cells, after which they are irradiated with epithermal neutrons. Theoretically, the tumour cells are killed by the high-LET particles produces in 10B(n, alpha)7Li reactions inside or close to the cell nucleus, while healthy brain cells with no boron uptake will be spared. In practice, a successful BNCT depends on the actual boron-distribution in the tissue, and consequently a new boron-compound aimed for BNCT must undergo detailed bio-distribution studies before clinical trials. In experimental work there is accordingly a great need for methods for quantitative bio-distribution measurements in tissue samples. In this paper we present an improved technique for neutron activated autoradiography providing quantitative boron images of freeze-sectioned tissue specimens from highly malignant rat brain gliomas. Particular attention has been paid to the correlation with the morphology of the specimens and to the altered self-absorption properties due to freeze-drying. A self-absorption correction factor for tumour tissue has been experimentally determined

    Radiotherapy practices in Sweden compared to the scientific evidence

    No full text
    A systematic assessment of radiotherapy for cancer was conducted by The Swedish Council on Technology Assessment in Health Care (SBU) in 2001. The assessment included a critical review of the literature on radiotherapy for cancer published in 1994-2001 and a prospective survey of radiotherapy practice in Sweden during 12 weeks in the autumn of 2001. The results of the survey were compared with the evidence derived from the scientific literature, and the following conclusions could be drawn: Radiotherapy is currently given to approximately 47% of new cancer cases. This figure is on a par with rates reported from other countries. For most tumour types, curative radiotherapy practices in Sweden are generally supported by the literature. Interstitial brachytherapy has been included in the treatment of non-gynaecological malignancies, and prostate cancer is now the most common indication. Palliative radiotherapy has increased and is today given in a more rational way using single or few fractions. However, it still seems to be under-utilized in Sweden. The need for radiotherapy can be expected to increase until the year 2010

    Reference dosimetry at the boron neutron capture therapy facility at Studsvik

    No full text
    The purpose of this publication was to present and evaluate the methods for reference dosimetry in the epithermal neutron beam at the neutron capture therapy facility at Studsvik. Measurements were performed in a PMMA phantom and in air using ionization chambers and activation probes in order to calibrate the epithermal neutron beam. Appropriate beam-dependant calibration factors were determined using Monte Carlo methods for the detectors used in the present publication. Using the presented methodology, the photon, neutron and total absorbed dose to PMMA was determined with an estimated uncertainty of +/- 5.0%, +/- 25%, and +/- 5.5% (2 SD), respectively. The uncertainty of the determination of the photon absorbed dose was comparable to the case in conventional radiotherapy, while the uncertainty of the neutron absorbed dose is much higher using the present methods. The thermal neutron group fluence, i.e., the neutron fluence in the energy interval 0-0.414 eV, was determined with an estimated uncertainty of +/- 2.8% (2 SD), which is acceptable for dosimetry in epithermal neutron beams

    RapidArc™ treatment verification using polymer gel dosimetry

    No full text
    The aim of this study was to verify a novel volumetric arc therapy technique, RapidArc". Polymer gel dosimetry system was used to measure the advanced inhomogeneous 3D dose distribution produced using the technique RapidArc". A preclinical installation of the novel beam delivery approach was set up on a linear accelerator at Rigshospitalet in Copenhagen. A prostate treatment plan was delivered to a 1.3 l nPAG gel phantom using one single arc rotation from 200 to 160 degrees, and a target dose of 3.3 Gy. Magnetic resonance imaging of the gel was carried out using the 1.5 T scanner and MATLAB was used for image processing and 3D rendering. The difference in relative absorbed dose between the treatment planning system (TPS) and gel measurement was calculated voxel by voxel within the 80% and the 95% isodose volume, respectively. Measurements agreed well with the TPS within the treated volume. Within both isodose volumes 90% of the voxels showed a deviation less or equal to 5%. This study shows that the 3D gel dosimetry system is a useful tool for dose verification of advanced treatment delivery techniques

    Quality assurance of patient dosimetry in boron neutron capture therapy

    No full text
    The verification of the correctness of planned and executed treatments is imperative for safety in radiotherapy. The purpose of the present work is to describe and evaluate the quality assurance (QA) procedures for patient dosimetry implemented at the boron neutron capture therapy (BNCT) facility at Studsvik, Sweden. The dosimetric complexity of the mixed neutron/photon field during BNCT suggests a careful verification of routine procedures, specifically the treatment planning calculations. In the present study, two methods for QA of patient dosimetry are presented. The first is executed prior to radiotherapy and involves an independent check of the planned absorbed dose to be delivered to a point in the patient for each treatment field. The second QA procedure involves in vivo dosimetry measurements using post-treatment activation analysis. Absorbed dose conversion factors taking the difference in material composition and geometry of the patient and the PMMA phantom used for reference dosimetry were determined using the Monte Carlo method. The agreement of the QA procedure prior to radiotherapy reveals an acceptably small deviation for 60 treatment fields of +/-4.2% (1 SD), while the in vivo dosimetry method presented may benefit from improvements, as the deviations observed were quite substantial (+/-12%, 1 SD), and were unlikely to be due to actual errors in the clinical dosimetry
    • …
    corecore