15 research outputs found

    Étude des moyens de mesure de la camptocormie

    Get PDF

    Modulation of rhythmic patterns and cumulative depolarization by group I metabotropic glutamate receptors in the neonatal rat spinal cord in vitro

    No full text
    The role of group I metabotropic glutamate receptors (mGluRs), and their subtypes 1 or 5, in rhythmic patterns generated by the neonatal rat spinal cord was investigated. Fictive locomotor patterns induced by N-methyl-d-aspartate + serotonin were slowed down by the subtype 1 antagonists (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA) or 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt) and unaffected by the subtype 5 antagonist 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP). The group I agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) depolarized ventral roots and disrupted fictive locomotion, an effect blocked by AIDA (or CPCCOEt) and reversed by increasing the N-methyl-d-aspartate concentration. Cumulative depolarization induced by low frequency trains of dorsal root stimuli was attenuated by DHPG and unchanged by AIDA or MPEP while rhythmic patterns or motoneuron spike wind-up persisted. Disinhibited bursting induced by strychnine + bicuculline was accelerated by DHPG, slowed down by AIDA (which prevented the action of DHPG), unaffected by MPEP and counteracted by the selective group II agonist (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine. The DHPG transformed regular bursting into arrhythmic bursting, a phenomenon also produced by the group II mGluR antagonist (2S)-alpha-ethylglutamic acid. These results indicate that, during fictive locomotion or disinhibited bursting, endogenous glutamate could activate discrete clusters of subtype 1 mGluRs to facilitate discharges. Diffuse activation by the exogenous agonist DHPG of group I mGluRs throughout spinal networks had an excitatory effect overshadowed by its much stronger depressant action due to concomitant facilitation of glycinergic transmission. Irregular disinhibited bursting caused by activation of subtype 1 receptors or block of group II receptors suggests that mGluRs could control not only the frequency but also the periodicity of bursting patterns, outlining novel mechanisms contributing to burst duration

    Adding Adaptable Stiffness Joints to CPG-Based Dynamic Bipedal Walking Generates Human-Like Gaits

    No full text
    In this paper, we propose a seven-link passivity-based dynamic walking model, in order to further understand the principles of real human walking and provide guidance in building bipedal robots. The model includes an upper body, two thighs, two shanks, flat feet and compliant joints. A bio-inspired central pattern generator (CPG)-based control method is applied to the proposed model. In addition, we add adaptable joint stiffness to the motion control. To validate the effectiveness of the proposed bipedal walking model, we carried out simulations and human walking experiments. Experimental results indicate that human-like walking gaits with different speeds and walking pattern transitions can be realized in the proposed locomotor system. ? Springer International Publishing Switzerland 2014.EI

    The actions of monoamines and distribution of noradrenergic and serotoninergic contacts on different subpopulations of commissural interneurons in the cat spinal cord

    No full text
    Modulatory actions of monoamines were investigated on spinal commissural interneurons which coordinate left-right hindlimb muscle activity through direct projections to the contralateral motor nuclei. Commissural interneurons located in Rexed lamina VIM, with identified projections to the contralateral gastrocnemius-soleus motor nuclei, were investigated in deeply anaesthetized cats. Most interneurons had dominant input from either the reticular formation or from group II muscle afferents; a small proportion of neurons had input from both. Actions of ionophoretically applied serotonin and noradrenaline were examined on extracellularly recorded spikes evoked monosynaptically by group II muscle afferents or reticulospinal tract fibres. Activation by reticulospinal fibres was facilitated by both serotonin and noradrenaline. Activation by group II afferents was also facilitated by serotonin but was strongly depressed by noradrenaline. To investigate the possible morphological substrates of this differential modulation, seven representative commissural interneurons were labelled intracellularly with tetramethylrhodamine-dextran and neurobiotin. Contacts from noradrenergic and serotoninergic fibres were revealed by immunohistochemistry and analysed with confocal microscopy. There were no major differences in the numbers and distributions of contacts among the interneurons studied. The findings suggest that differences in modulatory actions of monoamines, and subsequent changes in the recruitment of subpopulations of commissural interneurons in various behavioural situations, depend on intrinsic interneuron properties rather than on the patterns of innervation by monoaminergic fibres. The different actions of noradrenaline on different populations of interneurons might permit reconfiguration of the actions of the commissural neurons according to behavioural context
    corecore