148 research outputs found
Student Satisfaction and Performance in an Online Teacher Certification Program
The article presents a study which demonstrates the effectiveness of an online post baccalaureate teacher certification program developed by a Wisconsin university. The case method approach employing multiple methods and multiple data sources were used to investigate the degree to which pre-service teachers were prepared to teach. It was concluded that the study supports online delivery as an effective means of teacher preparation, but it was limited in the number of students followed into their first year of teaching
Recommended from our members
Hematopoietic Cell Transplantation in Patients With Primary Immune Regulatory Disorders (PIRD): A Primary Immune Deficiency Treatment Consortium (PIDTC) Survey.
Primary Immune Regulatory Disorders (PIRD) are an expanding group of diseases caused by gene defects in several different immune pathways, such as regulatory T cell function. Patients with PIRD develop clinical manifestations associated with diminished and exaggerated immune responses. Management of these patients is complicated; oftentimes immunosuppressive therapies are insufficient, and patients may require hematopoietic cell transplant (HCT) for treatment. Analysis of HCT data in PIRD patients have previously focused on a single gene defect. This study surveyed transplanted patients with a phenotypic clinical picture consistent with PIRD treated in 33 Primary Immune Deficiency Treatment Consortium centers and European centers. Our data showed that PIRD patients often had immunodeficient and autoimmune features affecting multiple organ systems. Transplantation resulted in resolution of disease manifestations in more than half of the patients with an overall 5-years survival of 67%. This study, the first to encompass disorders across the PIRD spectrum, highlights the need for further research in PIRD management
Emergence of Visual Saliency from Natural Scenes via Context-Mediated Probability Distributions Coding
Visual saliency is the perceptual quality that makes some items in visual scenes stand out from their immediate contexts. Visual saliency plays important roles in natural vision in that saliency can direct eye movements, deploy attention, and facilitate tasks like object detection and scene understanding. A central unsolved issue is: What features should be encoded in the early visual cortex for detecting salient features in natural scenes? To explore this important issue, we propose a hypothesis that visual saliency is based on efficient encoding of the probability distributions (PDs) of visual variables in specific contexts in natural scenes, referred to as context-mediated PDs in natural scenes. In this concept, computational units in the model of the early visual system do not act as feature detectors but rather as estimators of the context-mediated PDs of a full range of visual variables in natural scenes, which directly give rise to a measure of visual saliency of any input stimulus. To test this hypothesis, we developed a model of the context-mediated PDs in natural scenes using a modified algorithm for independent component analysis (ICA) and derived a measure of visual saliency based on these PDs estimated from a set of natural scenes. We demonstrated that visual saliency based on the context-mediated PDs in natural scenes effectively predicts human gaze in free-viewing of both static and dynamic natural scenes. This study suggests that the computation based on the context-mediated PDs of visual variables in natural scenes may underlie the neural mechanism in the early visual cortex for detecting salient features in natural scenes
Low level constraints on dynamic contour path integration
Contour integration is a fundamental visual process. The constraints on integrating
discrete contour elements and the associated neural mechanisms have typically been
investigated using static contour paths. However, in our dynamic natural environment
objects and scenes vary over space and time. With the aim of investigating the
parameters affecting spatiotemporal contour path integration, we measured human
contrast detection performance of a briefly presented foveal target embedded in
dynamic collinear stimulus sequences (comprising five short 'predictor' bars appearing
consecutively towards the fovea, followed by the 'target' bar) in four experiments. The
data showed that participants' target detection performance was relatively unchanged
when individual contour elements were separated by up to 2° spatial gap or 200ms
temporal gap. Randomising the luminance contrast or colour of the predictors, on the
other hand, had similar detrimental effect on grouping dynamic contour path and
subsequent target detection performance. Randomising the orientation of the
predictors reduced target detection performance greater than introducing misalignment
relative to the contour path. The results suggest that the visual system integrates
dynamic path elements to bias target detection even when the continuity of path is
disrupted in terms of spatial (2°), temporal (200ms), colour (over 10 colours) and
luminance (-25% to 25%) information. We discuss how the findings can be largely
reconciled within the functioning of V1 horizontal connections
Letter from C. J. Caywood to Maurice J. Sullivan
Letter to Maurice J. Sullivan from C. J. Caywood listing the lighting fixtures to be installed in the Houston Negro Hospital for the total sum of $450.95
- …