35 research outputs found

    Melting mud in Earth's mantle

    Get PDF
    Melting of subducted sediment remains controversial, as direct observation of sediment melt generation at mantle depths is not possible. Geochemical fingerprints provide indirect evidence for subduction delivery of sediment to the mantle; however, sediment abundance in mantle-derived melt is generally low (0%–2%), and difficult to detect. Here we provide evidence for melting of subducted sediment in granite sampled from an exhumed mantle section. Peraluminous granite dikes that intrude peridotite in the Oman–United Arab Emirates ophiolite have U-Pb ages of 99.8 ± 3.3 Ma that predate obduction. The dikes have unusually high oxygen isotope (ÎŽ18O) values for whole rock (14–23‰) and quartz (20–22‰), and yield the highest ÎŽ18O zircon values known (14–28‰; values relative to Vienna standard mean ocean water [VSMOW]). The extremely high oxygen isotope ratios uniquely identify the melt source as high-ÎŽ18O marine sediment (pelitic and/or siliciceous mud), as no other source could produce granite with such anomalously high ÎŽ18O. Formation of high-ÎŽ18O sediment-derived (S-type) granite within peridotite requires subduction of sediment to the mantle, where it melted and intruded overlying mantle wedge. The granite suite described here contains the highest oxygen isotope ratios reported for igneous rocks, yet intruded mantle peridotite below the Mohorovičić seismic discontinuity, the most primitive oxygen isotope reservoir in the silicate Earth. Identifying the presence and quantifying the extent of sediment melting within the mantle has important implications for understanding subduction recycling of supracrustal material and effects on mantle heterogeneity over time.National Geographi

    Shocked monazite chronometry: integrating microstructural and in situ isotopic age data for determining precise impact ages

    Get PDF
    Monazite is a robust geochronometer and occurs in a wide range of rock types. Monazite also records shock deformation from meteorite impact but the effects of impact-related microstructures on the U–Th–Pb systematics remain poorly constrained. We have, therefore, analyzed shock-deformed monazite grains from the central uplift of the Vredefort impact structure, South Africa, and impact melt from the Araguainha impact structure, Brazil, using electron backscatter diffraction, electron microprobe elemental mapping, and secondary ion mass spectrometry (SIMS). Crystallographic orientation mapping of monazite grains from both impact structures reveals a similar combination of crystal-plastic deformation features, including shock twins, planar deformation bands and neoblasts. Shock twins were documented in up to four different orientations within individual monazite grains, occurring as compound and/or type one twins in (001), (100), (10 1 ÂŻ) , {110}, { 212 } , and type two (irrational) twin planes with rational shear directions in [ 0 1 ÂŻ 1 ÂŻ ] and [ 1 ÂŻ 1 ÂŻ 0 ]. SIMS U–Th–Pb analyses of the plastically deformed parent domains reveal discordant age arrays, where discordance scales with increasing plastic strain. The correlation between discordance and strain is likely a result of the formation of fast diffusion pathways during the shock event. Neoblasts in granular monazite domains are strain-free, having grown during the impact events via consumption of strained parent grains. Neoblastic monazite from the Inlandsee leucogranofels at Vredefort records a 207Pb/206Pb age of 2010 ± 15 Ma (2σ, n = 9), consistent with previous impact age estimates of 2020 Ma. Neoblastic monazite from Araguainha impact melt yield a Concordia age of 259 ± 5 Ma (2σ, n = 7), which is consistent with previous impact age estimates of 255 ± 3 Ma. Our results demonstrate that targeting discrete microstructural domains in shocked monazite, as identified through orientation mapping, for in situ U–Th–Pb analysis can date impact-related deformation. Monazite is, therefore, one of the few high-temperature geochronometers that can be used for accurate and precise dating of meteorite impacts

    Hints of Universality from Inflection Point Inflation

    Get PDF
    This work aims to understand how cosmic inflation embeds into larger models of particle physics and string theory. Our work operates within a weakened version of the Landscape paradigm, wherein it is assumed that the set of possible Lagrangians is vast enough to admit the notion of a generic model. By focusing on slow-roll inflation, we examine the roles of both the scalar potential and the space of couplings which determine its precise form. In particular, we focus on the structural properties of the scalar potential, and find a surprising result: inflection point inflation emerges as an important —and under certain assumptions, dominant — possibility in the context of generic scalar potentials. We begin by a systematic coarse graining over the set of possible inflection point inflation models using V.I. Arnold’s ADE classification of singularities. Similar to du Val’s pioneering work on surface singularities, these determine structural classes for inflection point inflation which depened on a distinct number of control parameters. We consider both single and multifield inflation, and show how the various structural classes embed within each other. We also show how such control parameters influence the larger physical models in to which inflation is embedded. These techniques are then applied to both MSSM inflation and KKLT-type models of string cosmology. In the former case, we find that the scale of inflation can be entirely encoded within the super- potential of supersymmetric quantum field theories. We show how this relieves the fine-tuning required in such models by upwards of twelve orders of magnitude. Moreover, unnatural tuning between SUSY breaking and SUSY preserving sectors is eliminated without the explicit need for any hidden sector dynamics. In the later case, we discuss how structural stability vastly generalizes — and addresses — the Kallosh-Linde problem. Implications for the spectrum of SUSY breaking soft terms are then discussed, with an emphasis on how they may assist in constraining the inflationary scalar potential. We then pivot to a general discussion of the FLRW-scalar phase space, and show how inflection points induce caustics — or dynamical fixed points — amongst the space of possible trajectories. These fixed points are then used to argue that for uninformative priors on the space of couplings, the likelihood of inflection point inflation scales with the inverse cube of the number of e-foldings. We point out the geometric origin for the known ambiguity in the Liouville measure, and demonstrate of inflection point inflation ameliorates this problem. Finally we investigate the effect of the fixed point structure on the spectrum of density perturbations. We show how an anomaly in the Cosmic Mircowave Background data — low power at large scales — can be explained as a by product of the fixed point dynamics

    Shock impedance amplified impact deformation of zircon in granitic rocks from the Chicxulub impact crater

    Get PDF
    Zircon is a precise chronometer and prominent recorder of impact deformation. However, many impact-induced features in zircon are poorly calibrated, sometimes due to contradicting experimental data, in other instances due to the lack of systematic studies of impact-deformed zircon. To resolve issues with the shock petrographic use of zircon, we classified impact deformation features in 429 zircon grains in a continuous drill core of uplifted, granitic bedrock in the peak ring of the 200-km-diameter K-Pg Chicxulub impact structure. Following initial identification in backscattered electron (BSE) images, Raman spectroscopy and electron backscatter diffraction confirmed one reidite-bearing zircon grain. Quartz-based shock barometry indicates the host rock of this zircon-reidite grain experienced an average shock pressure of 17.5 GPa. A survey of BSE images of 429 ZrSiO4 grains found brittle deformation features are ubiquitous, with planar fractures in one to five sets occurring in 23% of all zircon grains. Our survey also reveals a statistically significant correlation of the occurrence of planar fractures in zircon with the types of host materials. Compared to zircon enclosed in mafic, higher density mineral hosts, felsic, low-density minerals show a much higher incidence of zircon with planar fractures. This finding suggests amplification of pressure due to shock impedance contrasts between zircon and its mineral hosts. Using the impedance matching method, we modeled the shock impedance pressure amplification effect for zircon inclusions in Chicxulub granitic hosts. Our modeling indicates shock impedance could have amplified the average 17.5 GPa shock pressure in a zircon inclusion in quartz or feldspar in the Chicxulub granitic rocks to 24 ± 1 GPa, suggesting that reidite in these rocks formed between 17.5 and 25 GPa. In essence, our study of impedance-induced shock pressure amplification in zircon assemblages, including the onset of reidite formation, details how shock impedance in mineral associations can be quantified to refine shock pressure estimates

    Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography

    No full text
    The only physical evidence from the earliest phases of Earth’s evolution comes from zircons, ancient mineral grains that can be dated using the U–Th–Pb geochronometer1. Oxygen isotope ratios from such zircons have been used to infer when the hydrosphere and conditions habitable to life were established2, 3. Chemical homogenization of Earth’s crust and the existence of a magma ocean have not been dated directly, but must have occurred earlier4. However, the accuracy of the U–Pb zircon ages can plausibly be biased by poorly understood processes of intracrystalline Pb mobility5, 6, 7. Here we use atom-probe tomography8 to identify and map individual atoms in the oldest concordant grain from Earth, a 4.4-Gyr-old Hadean zircon with a high-temperature overgrowth that formed about 1 Gyr after the mineral’s core. Isolated nanoclusters, measuring about 10 nm and spaced 10–50 nm apart, are enriched in incompatible elements including radiogenic Pb with unusually high 207Pb/206Pb ratios. We demonstrate that the length scales of these clusters make U–Pb age biasing impossible, and that they formed during the later reheating event. Our tomography data thereby confirm that any mixing event of the silicate Earth must have occurred before 4.4 Gyr ago, consistent with magma ocean formation by an early moon-forming impact4 about 4.5 Gyr ago
    corecore