105 research outputs found
Intravenous fluids in pediatric patients. An update
Fluids therapy prescription in pediatrics is a common clinical event. The basis for this type of treatment must be understood by all these physicians involved with children short – term care, liquids handling to pediatric patients on perioperative, postoperative, and maintenance stage and lack of total or partial airway. Those aimed to keep the balance in the different bodily compartments. The primary objective of this article is to give a clear and update concept about maintenance fluids in the pediatric population, aimed to general doctors and pediatricians whom are in charged of the populatio
Actualización en líquidos endovenosos de mantenimiento en pacientes pediátricos.
Fluids therapy prescription in pediatrics is a common clinical event. The basis for this type of treatment must be understood by all these physicians involved with children short – term care, liquids handling to pediatric patients on perioperative, postoperative, and maintenance stage and lack of total or partial airway. Those aimed to keep the balance in the different bodily compartments. The primary objective of this article is to give a clear and update concept about maintenance fluids in the pediatric population, aimed to general doctors and pediatricians whom are in charged of the populationLa prescripción de la terapia de fluidos en pediatría es un evento clínico común, los fundamentos en que se basa este tipo de tratamiento deben ser comprendidos por todos los médicos involucrados en la atención a corto plazo de los niños, el manejo de líquidos en los pacientes pediátricos en el perioperatorio, posoperatorio y de mantenimiento, en ausencia total o parcial de la vía oral, están orientados a mantener el equilibrio de los diferentes compartimientos corporales. El objetivo del presente artículo es brindar un concepto claro y actualizado acerca de líquidos de mantenimiento en población pediátrica, dirigido a médicos generales y pediatras
Regenerative endodontic procedure combined with apical surgery of a necrotic permanent incisor with extensive periapical lesion using plasma rich in growth factors (PRGF) : a case report with 6 years post-op evaluation using CBCT
The aim of this case report is to describe the step-by step and outcomes of a treatment approach which simultaneously combines a Regenerative Endodontic Procedure (REP) and apical surgery using PRGF as treatment of a post-traumatic necrotic permanent cen
Arquitectura de Computadoras con RISC-V
La formación en ingeniería de computadoras cumple una función fundamental en la educación en la ciencia de la computación. Esta capacitación proporciona a los estudiantes los conocimientos que necesitan para diseñar, configurar y maximizar las capacidades de los sistemas computacionales. Históricamente, esta área ha sido enseñada con arquitecturas de conjuntos de instrucciones de tipo reducido (RISC) dada la dificultad que conlleva el entendimiento de las arquitecturas de tipo complejo (CISC), tal como su nombre lo indica.
En las últimas tres décadas, esta área ha pasado por varias arquitecturas RISC, tales como DLX, MIPS, SPARC y ARM. Sin embargo, ninguna ha permitido una integración vertical totalmente abierta, de libre uso y sin restricciones por licenciamiento. Esta arquitectura RISC-V pretende brindar un estándar moderno que fácilmente pueda cumplir las necesidades pedagógicas en el aula de clase. De igual forma, RISC-V logra brindar la robustez necesaria para cumplir con los requerimientos para su implementación en procesadores para teléfonos inteligentes, tabletas y sistemas embebidos, en donde actualmente domina la arquitectura ARM; y en computadoras portátiles y de escritorio, servidores y supercomputadoras, en donde domina la arquitectura X86-64. Podría proyectarse que en los próximos años el impacto de RISC-V en la arquitectura de computadoras será equivalente al rol que ha jugado Linux en los sistemas operativos.Computer engineering training plays a key role in computer science education. This training provides students with the knowledge they need to design, configure and maximize the capabilities of computer systems. Historically, this area has been taught with reduced-type instruction set (RISC) architectures given the difficulty involved in understanding complex-type architectures (CISC), as its name suggests.
In the last three decades, this area has gone through several RISC architectures, such as DLX, MIPS, SPARC and ARM. However, none has allowed a fully open vertical integration, free of use and without licensing restrictions. This RISC-V architecture aims to provide a modern standard that can easily meet the pedagogical needs in the classroom. Likewise, RISC-V manages to provide the necessary robustness to meet the requirements for its implementation in processors for smartphones, tablets and embedded systems, where it currently dominates the ARM architecture; and on laptops and desktops, servers and supercomputers, where it dominates the X86-64 architecture. It could be projected that in the coming years the impact of RISC-V on computer architecture will be equivalent to the role that Linux has played in operating systemsContenido
CAPÍTULO UNO
Introducción a RISK-V........................................................................................................15
1.1. Historia de la computadora .....................................................................................20
1.1.1. El quipu ..........................................................................................................21
1.1.2. La yupana .......................................................................................................21
1.1.3. El ábaco chino ................................................................................................22
1.1.4. La pascalina....................................................................................................23
1.1.5. Rueda de Leibniz............................................................................................24
1.1.6. Máquina analítica ...........................................................................................27
1.1.7. Colossus .........................................................................................................27
1.1.8. Z3 ...................................................................................................................31
1.1.9. ABC................................................................................................................31
1.1.10. ENIAC..........................................................................................................33
1.2. Criterios de diseño de computadoras......................................................................38
1.2.1. Diseñar teniendo en cuenta la ley de Moore ..................................................38
1.2.2. Usar la abstracción para simplificar el diseño................................................38
1.2.3. Reducir el tiempo de ejecución para los casos más comunes........................39
1.2.4. Mejorar rendimiento a través del paralelismo................................................40
1.2.5. Mejorar rendimiento a través de la segmentación..........................................40
1.2.6. Mejorar rendimiento a través de la predicción de saltos................................41
1.2.7. Jerarquía de memorias....................................................................................42
1.2.8. Mejorar fiabilidad a través de redundancia ....................................................43
1.3. Evaluación de rendimiento de la computadora .......................................................44
1.4. Ejercicios Capítulo 1...............................................................................................46
CAPÍTULO DOS
Instrucciones........................................................................................................................51
2.1. Instrucciones aritmético lógicas..............................................................................54
2.1.1. Instrucciones tipo R........................................................................................54
2.1.2. Instrucciones tipo I.........................................................................................58
2.2. Instrucciones de memoria de datos.........................................................................61
2.2.1. Instrucciones de lectura de memoria tipo I ....................................................61
2.2.2. Instrucciones de escritura en memoria tipo S.................................................63
2.3. Instrucciones de saltos condicionados ....................................................................65
2.4. Instrucciones de saltos incondicionados.................................................................72
2.4.1. jal tipo J..........................................................................................................72
2.4.2. jalr tipo I.........................................................................................................73
2.4.3. Funciones .......................................................................................................73
2.5. Instrucciones auxiliares...........................................................................................80
2.6. Pseudo instrucciones...............................................................................................81
2.7. Ejercicios Capítulo 2...............................................................................................83
CAPÍTULO TRES
Procesador............................................................................................................................87
3.1. Procesador Monociclo.............................................................................................87
3.1.1. Memoria de instrucciones ..............................................................................89
3.1.2. Unidad de control...........................................................................................89
3.1.3. Unidad de registros.........................................................................................92
3.1.4. Unidad de inmediatos.....................................................................................93
3.1.5. Unidad aritmética lógica ................................................................................94
3.1.6. Unidad de saltos.............................................................................................96
3.1.7. Memoria de datos...........................................................................................96
3.1.8. Flujo de datos.................................................................................................98
3.2. Procesador segmentado.........................................................................................103
3.2.1. Procesador segmentado con solución a los problemas
de segmentación por software ................................................................................105
3.2.2. Segmentos del procesador............................................................................108
3.2.3. Procesador segmentado con solución a los problemas
de segmentación por hardware...............................................................................114
3.3. Ejercicios Capítulo 3.............................................................................................123
CAPÍTULO CUATRO
Sistemas de Entrada y Salida .............................................................................................129
4.1. Espacio de direccionamiento...........................................................................129
4.1.1. Controlador de video....................................................................................131
4.1.2. Controlador de teclado .................................................................................133
4.2. Ejercicios Capítulo 4.............................................................................................134
Apéndice A
Estándar internacional para unidades.................................................................................135
A.1. Estándar ISO/IEC 80000............................................................................................136
A.1.1. Estándar para ciencia de la información y tecnología ISO/IEC 80000-13 .............137
Apéndice B........................................................................................................................139
Glosario.............................................................................................................................139
Bibliografía .......................................................................................................................14
The effect of glass ionomer and adhesive cements on substance P expression in human dental pulp
Objectives: The purpose of this study was to quantify the effect of glass ionomer and adhesive cements on SP
expression in healthy human dental pulp.
Study Design: Forty pulp samples were obtained from healthy premolars where extraction was indicated for orthodontic
reasons. In thirty of these premolars a Class V cavity preparation was performed and teeth were equally divided
in three groups: Experimental Group I: Glass Ionomer cement was placed in the cavity. Experimental Group
II: Adhesive Cement was placed in the cavity. Positive control group: Class V cavities only. The remaining ten
healthy premolars where extracted without treatment and served as a negative control group. All pulp samples
were processed and SP was measured by radioimmunoassay.
Results: Greater SP expression was found in the adhesive cement group, followed by the glass ionomer and the
positive control groups. The lower SP values were for the negative control group. ANOVA showed statistically
significant differences between groups (p<0.0001). Tukey HSD post hoc tests showed statistically significant differences
in SP expression between negative control group and the 3 other groups (p<0.01). Differences between
the cavity-only group and the two experimental groups were also statistically significant (p<0.05 and p<0.01 respectively).
There is also a statistically significant difference between the two experimental groups (p<0.01).
Conclusions: These findings suggest that adhesive cements provoke a greater SP expression when compared with
glass ionomer
Comparative outcomes of platelet concentrates and blood clot scaffolds for regenerative endodontic procedures : a systematic review of randomized controlled clinical trials
The main objective of this systematic review is to evaluate the effectiveness of platelet concentrates -Platelet-rich plasma (PRP) or Fibrin-rich plasma (PRF)- compared with blood clot (BC) as scaffolds for maturogenesis, in patients with immature perman
Insulin-Like Growth Factor Axis Expression in Dental Pulp Cells Derived From Carious Teeth
The insulin-like growth factor (IGF) axis plays an important role in dental tissue regeneration and most components of this axis are expressed in human dental pulp cells (DPCs). In our previous study, we analyzed IGF axis gene expression in DPCs and demonstrated a novel role of IGF binding protein (IGFBP)-2 and -3 in coordinating mineralized matrix formation in differentiating DPCs. A more recent study from our laboratory partially characterized dental pulp stem cells from teeth with superficial caries (cDPCs) and showed that their potential to differentiate odontoblasts and/or into osteoblasts is enhanced by exposure to the mild inflammatory conditions characteristic of superficial caries. In the present study, we examine whether changes apparent in IGF axis expression during osteogenic differentiation of healthy DPCs are also apparent in DPCs derived from carious affected teeth
Dentin growth after direct pulp capping with the different fractions of plasma rich in growth factors (PRGF) vs MTA: experimental study in animal model
Background: The study aimed to evaluate the area of dentin growth in rabbit incisors after pulp capping with plasma rich in growth factors (PRGF) compared with mineral trioxide aggregate (MTA) by fluorescence. Methods: 27 upper and lower incisors of rabbits were divided into 4 groups: poor PRGF (F1) (n = 9 teeth), rich PRGF (F2) (n = 8 teeth), ProRoot MTA (positive control, n = 5 teeth) and untreated (NC) (negative control, n=5). Fluorochrome markers were injected 24 hours before surgery and the day before euthanasia, 28 days after the vital pulp therapy (VPT). Two transverse cuts were performed to every tooth: the first cut (A), 1 mm incisal to the gingival margin, and the second cut (B), 5 mm apical to the first cut. The sections were assessed with histomorphometric evaluation by fluorescence microscopy, comparing the dentin area between fluorescence marks and the total mineralized area. Results: The higher percentage of dentin growth was observed in the F2 group (B=63.25%, A=36.52%), followed by F1 (B=57.63%, A=30,12%) and MTA (B=38.64%, A=15,74%) The group with lowest percentage of dentin growth was the NC group (B=29.22%, A=7.82%). Significant difference (p <0.05) was found between F2 group and MTA, also statistically significant difference has been observed comparing dentin growth areas of NC group with F1 and F2 groups. Conclusions: The application of PRGF rich and poor fraction as a pulp capping material stimulated dentin formation significantly more intensively than MTA and NC
IGFBP-2 and -3 co-ordinately regulate IGF1 induced matrix mineralisation of differentiating human dental pulp cells
Human dental pulp cells (DPCs), which are known to contain a subset of stem cells capable of reforming a dentin and pulp-like complex upon in vivo transplantation, were isolated from third molars of three healthy donors and differentiated to a matrix mineralisation phenotype using by culture in dexamethasone and l-ascorbic acid. qRT-PCR analysis of insulin-like growth factor ( IGF) axis gene expression indicated that all genes, except insulin-like growth factor1 (IGF1) and insulin-like growth factor binding protein-1 ( IGFBP-1), were expressed in DPCs. During differentiation upregulation of insulin-like growth factor binding protein-2 (IGFBP-2) and downregulation of insulin-like growth factor binding protein-3 (IGFBP-3) expression was observed. Changes in IGFBP-2 and IGFBP-3 mRNA expression were confirmed at the protein level by ELISA of DPC conditioned medium functional analysis indicated that IGF1 stimulated the differentiation of DPCs and that the activity of the growth factor was enhanced by pre-complexation with IGFBP-2 but inhibited by pre-complexation with IGFBP-3. Therefore changes in IGFBP-2 and -3 expression during differentiation form part of a co-ordinated functional response to enhance the pro-differentiative action of IGF1 and represent a novel mechanism for the regulation of DPC differentiation
- …